Skip to main content
Log in

Influence of expandable graphite particle size on the synergy flame retardant property between expandable graphite and ammonium polyphosphate in semi-rigid polyurethane foam

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Effect of the difference of expandable graphite (EG) particle size on the synergistic flame retardant effect between expandable graphite (EG) and ammonium polyphosphate (APP) in the semi-rigid polyurethane foam (SPUF) was studied for the first time. Three large-span particle sizes of EG were added into SPUF with different mass ratios of EG/APP. The synergistic effect between EG and APP on the flame retardant property of composites was investigated using the limiting oxygen index test, horizontal–vertical burning test, thermogravimetric analysis (TGA), scanning electron microscope (SEM), etc. Flammability performance tests indicated that the larger particle size the EG possessed, the more obvious will be the synergistic effect exhibited between EG and APP. SEM images and TGA results provided positive evidence for the combustion tests. Synergistic effect was strongly influenced by the compactness of united protective layer. The maximal rate of the degradation of the SPUF composite system further confirmed the relationship between the rate of the composites’ degradation and the compactness of united protective layer. Speculative reactions which were related to the changes of EG in the presence of APP under high temperature were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sant’Anna SS, Souza DA, Carvalho CF et al (2008) Morphological and thermal analyses of flexible polyurethane foams containing commercial calcium carbonate [J]. Eclética Química 33(2):55–60

    Article  Google Scholar 

  2. Alfani R, Iannace S, Nicolais L (1998) Synthesis and characterization of starch-based polyurethane foams [J]. J Appl Polym Sci 68(5):739–745

    Article  CAS  Google Scholar 

  3. Branca C, Di Blasi C, Casu A et al (2003) Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion [J]. Thermochim Acta 399(1):127–137

    Article  CAS  Google Scholar 

  4. Cinelli P, Anguillesi I, Lazzeri A (2013) Green synthesis of flexible polyurethane foams from liquefied lignin [J]. Eur Polym J 49(6):1174–1184

    Article  CAS  Google Scholar 

  5. Gabbard JD (1997) Flexible water-blown polyurethane foams. U.S. Patent 5,624,968[P]

  6. Wang JQ, Chow WK (2005) A brief review on fire retardants for polymeric foams. J Appl Polym Sci 97(1):366–376

    Article  CAS  Google Scholar 

  7. Duquesne S, Le Bras M, Bourbigot S et al (2000) Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings [J]. J Fire Sci 18(6):456–482

    Article  CAS  Google Scholar 

  8. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes [J]. Prog Polym Sci 34(10):1068–1133

    Article  CAS  Google Scholar 

  9. Demir H, Arkış E, Balköse D et al (2005) Synergistic effect of natural zeolites on flame retardant additives [J]. Polym Degrad Stab 89(3):478–483

    Article  CAS  Google Scholar 

  10. Chiu SH, Wang WK (1998) Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives [J]. Polymer 39(10):1951–1955

    Article  CAS  Google Scholar 

  11. Awad WH, Wilkie CA (2010) Investigation of the thermal degradation of polyurea: the effect of ammonium polyphosphate and expandable graphite [J]. Polymer 51(11):2277–2285

    Article  CAS  Google Scholar 

  12. Li Y, Li B, Dai J et al (2008) Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system [J]. Polym Degrad Stab 93(1):9–16

    Article  CAS  Google Scholar 

  13. Anna P, Marosi G, Bourbigot S et al (2002) Intumescent flame retardant systems of modified rheology [J]. Polym Degrad Stab 77(2):243–247

    Article  CAS  Google Scholar 

  14. Gu J, Zhang G, Dong S et al (2007) Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings [J]. Surf Coat Technol 201(18):7835–7841

    Article  CAS  Google Scholar 

  15. Wang DY, Liu Y, Wang YZ et al (2007) Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates [J]. Polym Degrad Stab 92(8):1592–1598

    Article  CAS  Google Scholar 

  16. Ye L, Meng XY, Ji X et al (2009) Synthesis and characterization of expandable graphite–poly (methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams [J]. Polym Degrad Stab 94(6):971–979

    Article  CAS  Google Scholar 

  17. Modesti M, Lorenzetti A, Simioni F et al (2002) Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams [J]. Polym Degrad Stab 77(2):195–202

    Article  CAS  Google Scholar 

  18. Shi L, Li ZM, Xie BH et al (2006) Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams [J]. Polym Int 55(8):862–871

    Article  CAS  Google Scholar 

  19. Thirumal M, Khastgir D, Singha NK et al (2008) Effect of expandable graphite on the properties of intumescent flame-retardant polyurethane foam [J]. J Appl Polym Sci 110(5):2586–2594

    Article  CAS  Google Scholar 

  20. Fimmel K, Gabbert H J, Hasse V, et al. Preparation of flame-resistant soft polyurethane foams of reduced smoke density, and melamine/expandable graphite/polyether-polyol dispersions for this purpose: U.S. Patent 5,739,173 [P]. 1998-4-14

  21. Modesti M, Lorenzetti A (2002) Flame retardancy of polyisocyanurate–polyurethane foams: use of different charring agents [J]. Polym Degrad Stab 78(2):341–347

    Article  CAS  Google Scholar 

  22. Modesti M, Lorenzetti A (2003) Improvement on fire behavior of water blown PIR–PUR foams: use of a halogen-free flame retardant [J]. Eur Polym J 39(2):263–268

    Article  CAS  Google Scholar 

  23. Zatorski W, Brzozowski ZK, Kolbrecki A (2008) New developments in chemical modification of fire-safe rigid polyurethane foams [J]. Polym Degrad Stab 93(11):2071–2076

    Article  CAS  Google Scholar 

  24. Shi L, Li ZM, Yang W et al (2006) Properties and microstructure of expandable graphite particles pulverized with an ultra-high-speed mixer [J]. Powder Technol 170(3):178–184

    Article  CAS  Google Scholar 

  25. Hu X, Wang D, Wang S (2013) Synergistic effects of expandable graphite and dimethyl methyl phosphonate on the mechanical properties, fire behavior, and thermal stability of a polyisocyanurate–polyurethane foam [J]. Int J Min Sci Technol 23(1):13–20

    Article  CAS  Google Scholar 

  26. Duquesne S, Le Bras M, Bourbigot S et al (2001) Thermal degradation of polyurethane and polyurethane/expandable graphite coatings [J]. Polym Degrad Stab 74(3):493–499

    Article  CAS  Google Scholar 

  27. Zhu H, Zhu Q, Li J et al (2011) Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide [J]. Polym Degrad Stab 96(2):183–189

    Article  CAS  Google Scholar 

  28. Ge LL, Duan HJ, Zhang XG et al (2012) Synergistic effect of ammonium polyphosphate and expandable graphite on flame-retardant properties of acrylonitrile-butadiene-styrene [J]. J Appl Polym Sci 126(4):1337–1343

    Article  CAS  Google Scholar 

  29. Seefeldt H, Braun U, Wagner MH (2012) Residue stabilization in the fire retardancy of wood–plastic composites: combination of ammonium polyphosphate, expandable graphite, and red phosphorus [J]. Macromol Chem Phys 213(22):2370–2377

    Article  CAS  Google Scholar 

  30. Shih YF, Wang YT, Jeng RJ et al (2004) Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy [J]. Polym Degrad Stab 86(2):339–348

    Article  CAS  Google Scholar 

  31. Xie R, Qu B (2001) Synergistic effects of expandable graphite with some halogen-free flame retardants in polyolefin blends [J]. Polym Degrad Stab 71(3):375–380

    Article  CAS  Google Scholar 

  32. Zhang Y, Chen X, Fang Z (2013) Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS [J]. J Appl Polym Sci 128(4):2424–2432

    Article  CAS  Google Scholar 

  33. Yi L, Zou J, Zhou S, et al (2014) Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water-blown semi-rigid polyurethane foam [J]. J Appl Polym Sci 131(3)

  34. Luo W, Li Y, Zou H et al (2014) Study of different-sized sulfur-free expandable graphite on morphology and properties of water-blown semi-rigid polyurethane foams [J]. RSC Adv 4(70):37302–37310

    Article  CAS  Google Scholar 

  35. Wang B, Hu S, Zhao K et al (2011) Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate [J]. Ind Eng Chem Res 50(20):11476–11484

    Article  CAS  Google Scholar 

  36. Chuang FS (2007) Analysis of thermal degradation of diacetylene-containing polyurethane copolymers [J]. Polym Degrad Stab 92(7):1393–1407

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Natural Science Foundation of China (51273118), Provincial Science and Technology Pillar Program of Sichuan (2013FZ0006) for financial support, and the Analytical and Testing Center of Sichuan University for providing SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huawei Zou or Mei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Mo, X., Li, Y. et al. Influence of expandable graphite particle size on the synergy flame retardant property between expandable graphite and ammonium polyphosphate in semi-rigid polyurethane foam. Polym. Bull. 75, 5287–5304 (2018). https://doi.org/10.1007/s00289-018-2309-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2309-y

Keywords

Navigation