Influence of expandable graphite particle size on the synergy flame retardant property between expandable graphite and ammonium polyphosphate in semi-rigid polyurethane foam

Original Paper
  • 21 Downloads

Abstract

Effect of the difference of expandable graphite (EG) particle size on the synergistic flame retardant effect between expandable graphite (EG) and ammonium polyphosphate (APP) in the semi-rigid polyurethane foam (SPUF) was studied for the first time. Three large-span particle sizes of EG were added into SPUF with different mass ratios of EG/APP. The synergistic effect between EG and APP on the flame retardant property of composites was investigated using the limiting oxygen index test, horizontal–vertical burning test, thermogravimetric analysis (TGA), scanning electron microscope (SEM), etc. Flammability performance tests indicated that the larger particle size the EG possessed, the more obvious will be the synergistic effect exhibited between EG and APP. SEM images and TGA results provided positive evidence for the combustion tests. Synergistic effect was strongly influenced by the compactness of united protective layer. The maximal rate of the degradation of the SPUF composite system further confirmed the relationship between the rate of the composites’ degradation and the compactness of united protective layer. Speculative reactions which were related to the changes of EG in the presence of APP under high temperature were discussed.

Keywords

Semi-rigid polyurethane foam Expandable graphite particle size Ammonium polyphosphate Synergistic flame retardant effect 

Notes

Acknowledgements

The authors would like to thank National Natural Science Foundation of China (51273118), Provincial Science and Technology Pillar Program of Sichuan (2013FZ0006) for financial support, and the Analytical and Testing Center of Sichuan University for providing SEM measurements.

References

  1. 1.
    Sant’Anna SS, Souza DA, Carvalho CF et al (2008) Morphological and thermal analyses of flexible polyurethane foams containing commercial calcium carbonate [J]. Eclética Química 33(2):55–60CrossRefGoogle Scholar
  2. 2.
    Alfani R, Iannace S, Nicolais L (1998) Synthesis and characterization of starch-based polyurethane foams [J]. J Appl Polym Sci 68(5):739–745CrossRefGoogle Scholar
  3. 3.
    Branca C, Di Blasi C, Casu A et al (2003) Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion [J]. Thermochim Acta 399(1):127–137CrossRefGoogle Scholar
  4. 4.
    Cinelli P, Anguillesi I, Lazzeri A (2013) Green synthesis of flexible polyurethane foams from liquefied lignin [J]. Eur Polym J 49(6):1174–1184CrossRefGoogle Scholar
  5. 5.
    Gabbard JD (1997) Flexible water-blown polyurethane foams. U.S. Patent 5,624,968[P]Google Scholar
  6. 6.
    Wang JQ, Chow WK (2005) A brief review on fire retardants for polymeric foams. J Appl Polym Sci 97(1):366–376CrossRefGoogle Scholar
  7. 7.
    Duquesne S, Le Bras M, Bourbigot S et al (2000) Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings [J]. J Fire Sci 18(6):456–482CrossRefGoogle Scholar
  8. 8.
    Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes [J]. Prog Polym Sci 34(10):1068–1133CrossRefGoogle Scholar
  9. 9.
    Demir H, Arkış E, Balköse D et al (2005) Synergistic effect of natural zeolites on flame retardant additives [J]. Polym Degrad Stab 89(3):478–483CrossRefGoogle Scholar
  10. 10.
    Chiu SH, Wang WK (1998) Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives [J]. Polymer 39(10):1951–1955CrossRefGoogle Scholar
  11. 11.
    Awad WH, Wilkie CA (2010) Investigation of the thermal degradation of polyurea: the effect of ammonium polyphosphate and expandable graphite [J]. Polymer 51(11):2277–2285CrossRefGoogle Scholar
  12. 12.
    Li Y, Li B, Dai J et al (2008) Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system [J]. Polym Degrad Stab 93(1):9–16CrossRefGoogle Scholar
  13. 13.
    Anna P, Marosi G, Bourbigot S et al (2002) Intumescent flame retardant systems of modified rheology [J]. Polym Degrad Stab 77(2):243–247CrossRefGoogle Scholar
  14. 14.
    Gu J, Zhang G, Dong S et al (2007) Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings [J]. Surf Coat Technol 201(18):7835–7841CrossRefGoogle Scholar
  15. 15.
    Wang DY, Liu Y, Wang YZ et al (2007) Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates [J]. Polym Degrad Stab 92(8):1592–1598CrossRefGoogle Scholar
  16. 16.
    Ye L, Meng XY, Ji X et al (2009) Synthesis and characterization of expandable graphite–poly (methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams [J]. Polym Degrad Stab 94(6):971–979CrossRefGoogle Scholar
  17. 17.
    Modesti M, Lorenzetti A, Simioni F et al (2002) Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams [J]. Polym Degrad Stab 77(2):195–202CrossRefGoogle Scholar
  18. 18.
    Shi L, Li ZM, Xie BH et al (2006) Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams [J]. Polym Int 55(8):862–871CrossRefGoogle Scholar
  19. 19.
    Thirumal M, Khastgir D, Singha NK et al (2008) Effect of expandable graphite on the properties of intumescent flame-retardant polyurethane foam [J]. J Appl Polym Sci 110(5):2586–2594CrossRefGoogle Scholar
  20. 20.
    Fimmel K, Gabbert H J, Hasse V, et al. Preparation of flame-resistant soft polyurethane foams of reduced smoke density, and melamine/expandable graphite/polyether-polyol dispersions for this purpose: U.S. Patent 5,739,173 [P]. 1998-4-14Google Scholar
  21. 21.
    Modesti M, Lorenzetti A (2002) Flame retardancy of polyisocyanurate–polyurethane foams: use of different charring agents [J]. Polym Degrad Stab 78(2):341–347CrossRefGoogle Scholar
  22. 22.
    Modesti M, Lorenzetti A (2003) Improvement on fire behavior of water blown PIR–PUR foams: use of a halogen-free flame retardant [J]. Eur Polym J 39(2):263–268CrossRefGoogle Scholar
  23. 23.
    Zatorski W, Brzozowski ZK, Kolbrecki A (2008) New developments in chemical modification of fire-safe rigid polyurethane foams [J]. Polym Degrad Stab 93(11):2071–2076CrossRefGoogle Scholar
  24. 24.
    Shi L, Li ZM, Yang W et al (2006) Properties and microstructure of expandable graphite particles pulverized with an ultra-high-speed mixer [J]. Powder Technol 170(3):178–184CrossRefGoogle Scholar
  25. 25.
    Hu X, Wang D, Wang S (2013) Synergistic effects of expandable graphite and dimethyl methyl phosphonate on the mechanical properties, fire behavior, and thermal stability of a polyisocyanurate–polyurethane foam [J]. Int J Min Sci Technol 23(1):13–20CrossRefGoogle Scholar
  26. 26.
    Duquesne S, Le Bras M, Bourbigot S et al (2001) Thermal degradation of polyurethane and polyurethane/expandable graphite coatings [J]. Polym Degrad Stab 74(3):493–499CrossRefGoogle Scholar
  27. 27.
    Zhu H, Zhu Q, Li J et al (2011) Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide [J]. Polym Degrad Stab 96(2):183–189CrossRefGoogle Scholar
  28. 28.
    Ge LL, Duan HJ, Zhang XG et al (2012) Synergistic effect of ammonium polyphosphate and expandable graphite on flame-retardant properties of acrylonitrile-butadiene-styrene [J]. J Appl Polym Sci 126(4):1337–1343CrossRefGoogle Scholar
  29. 29.
    Seefeldt H, Braun U, Wagner MH (2012) Residue stabilization in the fire retardancy of wood–plastic composites: combination of ammonium polyphosphate, expandable graphite, and red phosphorus [J]. Macromol Chem Phys 213(22):2370–2377CrossRefGoogle Scholar
  30. 30.
    Shih YF, Wang YT, Jeng RJ et al (2004) Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy [J]. Polym Degrad Stab 86(2):339–348CrossRefGoogle Scholar
  31. 31.
    Xie R, Qu B (2001) Synergistic effects of expandable graphite with some halogen-free flame retardants in polyolefin blends [J]. Polym Degrad Stab 71(3):375–380CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Chen X, Fang Z (2013) Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS [J]. J Appl Polym Sci 128(4):2424–2432CrossRefGoogle Scholar
  33. 33.
    Yi L, Zou J, Zhou S, et al (2014) Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water-blown semi-rigid polyurethane foam [J]. J Appl Polym Sci 131(3)Google Scholar
  34. 34.
    Luo W, Li Y, Zou H et al (2014) Study of different-sized sulfur-free expandable graphite on morphology and properties of water-blown semi-rigid polyurethane foams [J]. RSC Adv 4(70):37302–37310CrossRefGoogle Scholar
  35. 35.
    Wang B, Hu S, Zhao K et al (2011) Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate [J]. Ind Eng Chem Res 50(20):11476–11484CrossRefGoogle Scholar
  36. 36.
    Chuang FS (2007) Analysis of thermal degradation of diacetylene-containing polyurethane copolymers [J]. Polym Degrad Stab 92(7):1393–1407CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduPeople’s Republic of China
  2. 2.System Engineering Institute of Sichuan AerospaceChengduPeople’s Republic of China

Personalised recommendations