Skip to main content
Log in

Functionalization of poly(epichlorohydrin) using sodium hydrogen squarate: cytotoxicity and compatibility in blends with chitosan

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymeric blends between chitosan and poly(epichlorohydrin) (PECH) modified with sodium hydrogen squarate were prepared by the casting method, using formic acid (85%) as the solvent. The compatibility of the blends was studied by different methods, such as Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analyses. Cytotoxicity assays were also performed by the direct contact method to assess the feasibility of using these materials in veterinary devices. Based on the analysis results, we concluded that these polymers are compatible due to the interaction between the NH3+ chitosan groups and CO groups of the modified poly(epichlorohydrin), as well the hydrogen bond between the chlorine atom of the modified poly(epichlorohydrin) and the hydrogens of the chitosan methyl group. It is important to highlight that electrostatic interactions are also responsible for the non-toxicity of these materials in bovine fibroblast cells, which indicates the feasibility of their use in veterinary devices for cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154. https://doi.org/10.1021/ja00897a025

    Article  CAS  Google Scholar 

  2. Kennedy FR (1989) Syntheses and separations using functional polymers Edited by D. C. Sherrington and P. Hodge, John Wiley & Sons, Chichester, 1988. pp. 454. ISBN 0-471-91848-2. Br Polym J 21(4):359–360. https://doi.org/10.1002/pi.4980210415

    Article  Google Scholar 

  3. Schnatter WFK (1992) Functionalized polymers and their applications, by A. Akelah and A. Moet, Chapman and Hall, London, 1990, 345 pp. J Polym Sci Part A Polym Chem 30(11):2473. https://doi.org/10.1002/pola.1992.080301123

    Article  Google Scholar 

  4. Pérez M, Ronda JC, Reina JA, Serra A (2001) Synthesis of functional polymers by chemical modification of PECH and PECH–PEO with substituted phenolates. Polymer 42(1):1–8. https://doi.org/10.1016/S0032-3861(00)00352-9

    Article  Google Scholar 

  5. Tiemblo P, Guzmán J, Riande E, Mijangos C, Reinecke H (2001) The gas transport properties of PVC functionalized with mercapto pyridine groups. Macromolecules 35(2):420–424. https://doi.org/10.1021/ma010656s

    Article  CAS  Google Scholar 

  6. Herrero M, Quéméner E, Ulvé S, Reinecke H, Mijangos C, Grohens Y (2006) Bacterial adhesion to poly(vinyl chloride) films: effect of chemical modification and water induced surface reconstruction. J Adhes Sci Technol 20(2–3):183–195. https://doi.org/10.1163/156856106775897801

    Article  CAS  Google Scholar 

  7. Lisa G, Avram E, Paduraru G, Irimia M, Hurduc N, Aelenei N (2003) Thermal behaviour of polystyrene, polysulfone and their substituted derivatives. Polym Degrad Stab 82(1):73–79

    Article  CAS  Google Scholar 

  8. Pérez M, Reina JA, Serra A, Ronda JC (2000) New evidences of the degradation mechanism of poly(oxy-1-chloromethylethylene) with basic reagents: studies with poly (oxy-l-chloromethyl-ethylene-co-oxyethylene). Polymer 41(20):7331–7337. https://doi.org/10.1016/S0032-3861(00)00081-1

    Article  Google Scholar 

  9. Pérez M, Ronda JC, Reina JA, Serra A (2000) Studies on the microstructure of the polymer obtained by chemical modification of poly(oxy-1-chloromethyl-ethylene-co-oxyethylene) (PECH-PEO) with phenolate. Polymer 41(7):2349–2358. https://doi.org/10.1016/S0032-3861(99)00423-1

    Article  Google Scholar 

  10. Otsu T, Yoshida M (1982) Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Die Makromolekulare Chemie Rapid Commun 3(2):127–132. https://doi.org/10.1002/marc.1982.030030208

    Article  CAS  Google Scholar 

  11. Iizawa T, Nishikubo T, Ichikawa M, Sugawara Y, Okawara M (1985) Substitution and elimination reactions of poly(epichlorohydrin) and poly(2-chloroethyl vinyl ether) using phase transfer catalysis. J Polym Sci Polym Chem Ed 23(7):1893–1906. https://doi.org/10.1002/pol.1985.170230705

    Article  CAS  Google Scholar 

  12. Navarro R, Pérez M, Rodriguez G, Reinecke H (2007) Selective nucleophilic substitution reactions on poly(epichlorohydrin) using aromatic and aliphatic thiol compounds. Eur Polym J 43(10):4516–4522. https://doi.org/10.1016/j.eurpolymj.2007.07.033

    Article  CAS  Google Scholar 

  13. Lee J-C, Litt MH, Rogers CE (1997) Synthesis and properties of (Alkylthio)methyl-substituted poly(oxyalkylene)s and (Alkylsulfonyl)methyl-substituted poly(oxyalkylene)s. Macromolecules 30(13):3766–3774. https://doi.org/10.1021/ma970163g

    Article  CAS  Google Scholar 

  14. Lee J-C, Litt MH, Rogers CE (1998) Miscibility behaviors of (Alkylsulfonyl)methyl-substituted poly(oxyalkylene) blends. Macromolecules 31(13):4232–4239. https://doi.org/10.1021/ma971813j

    Article  CAS  Google Scholar 

  15. de Oliveira VE, Freitas MCR, Diniz R, Yoshida MI, Speziali NL, Edwards HGM, de Oliveira LFC (2008) Crystal structure and vibrational spectra of some metal complexes of pseudo-oxocarbon bis(dicyanomethylene)squarate in its cis and trans forms. J Mol Struct 881(1–3):57–67. https://doi.org/10.1016/j.molstruc.2007.08.029

    Article  CAS  Google Scholar 

  16. Teles WM, Farani RdA, Maia DS, Speziali NL, Yoshida MI, de Oliveira LFC, Machado FC (2006) Crystal structure, thermal analysis and spectroscopic properties of Tetrabutylammonium 3,5-bis(dicyanomethylene)-cyclopentane-1,2,4-trionate: an intriguing pseudo-oxocarbon and its zinc(II) complex. J Mol Struct 783(1–3):52–60. https://doi.org/10.1016/j.molstruc.2005.08.020

    Article  CAS  Google Scholar 

  17. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed 12(3):267–281. https://doi.org/10.1163/156856201750180807

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Wu P, Hu X, You C, Guo R, Shi H, Guo S, Zhou H, Chaoheng Y, Zhang Y, Han C (2016) Polyurethane membrane/knitted mesh-reinforced collagen–chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure. J Mech Behav Biomed Mater 56:120–133. https://doi.org/10.1016/j.jmbbm.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Ma L, Gao C (2012) Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater Sci Eng 32(8):2361–2366. https://doi.org/10.1016/j.msec.2012.07.008

    Article  CAS  Google Scholar 

  20. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629. https://doi.org/10.1016/j.jfda.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Cheng Y-H, Tsai T-H, Jhan Y-Y, Chiu AW-H, Tsai K-L, Chien C-S, Chiou S-H, Liu CJ-l (2016) Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr Polym 144:390–399. https://doi.org/10.1016/j.carbpol.2016.02.080

    Article  CAS  PubMed  Google Scholar 

  22. Anirudhan TS, Divya PL, Nima J (2016) Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem Eng J 284:1259–1269. https://doi.org/10.1016/j.cej.2015.09.057

    Article  CAS  Google Scholar 

  23. Tsiourvas D, Sapalidis A, Papadopoulos T (2016) Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater Today Commun 7:59–66. https://doi.org/10.1016/j.mtcomm.2016.03.006

    Article  CAS  Google Scholar 

  24. Kanimozhi K, Khaleel Basha S, Sugantha Kumari V (2016) Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater Sci Eng 61:484–491. https://doi.org/10.1016/j.msec.2015.12.084

    Article  CAS  Google Scholar 

  25. Barros AAA, Alves A, Nunes C, Coimbra MA, Pires RA, Reis RL (2013) Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomater 9(11):9086–9097. https://doi.org/10.1016/j.actbio.2013.06.036

    Article  CAS  PubMed  Google Scholar 

  26. Meng D, Dong L, Wen Y, Xie Q (2015) Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng 47:266–272. https://doi.org/10.1016/j.msec.2014.11.049

    Article  CAS  Google Scholar 

  27. Mattioli-Belmonte M, Cometa S, Ferretti C, Iatta R, Trapani A, Ceci E, Falconi M, De Giglio E (2014) Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydr Polym 110:173–182. https://doi.org/10.1016/j.carbpol.2014.03.097

    Article  CAS  PubMed  Google Scholar 

  28. Xin-Yuan S, Tian-Wei T (2004) New contact lens based on chitosan/gelatin composites. J Bioact Compat Polym 19(6):467–479. https://doi.org/10.1177/0883911504048410

    Article  CAS  Google Scholar 

  29. Wan Y, Lu X, Dalai S, Zhang J (2009) Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochim Acta 487(1–2):33–38. https://doi.org/10.1016/j.tca.2009.01.007

    Article  CAS  Google Scholar 

  30. Pereira AGB, Paulino AT, Nakamura CV, Britta EA, Rubira AF, Muniz EC (2011) Effect of starch type on miscibility in poly(ethylene oxide) (PEO)/starch blends and cytotoxicity assays. Mater Sci Eng 31(2):443–451. https://doi.org/10.1016/j.msec.2010.11.004

    Article  CAS  Google Scholar 

  31. Park S-N, Park J-C, Kim HO, Song MJ, Suh H (2002) Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials 23(4):1205–1212. https://doi.org/10.1016/S0142-9612(01)00235-6

    Article  CAS  PubMed  Google Scholar 

  32. Georgopoulos SL, Diniz R, Yoshida MI, Speziali NL, Santos HFD, Junqueira GMA, de Oliveira LFC (2006) Vibrational spectroscopy and aromaticity investigation of squarate salts: a theoretical and experimental approach. J Mol Struct 794(1–3):63–70. https://doi.org/10.1016/j.molstruc.2006.01.035

    Article  CAS  Google Scholar 

  33. Georgopoulos SL, Diniz R, Rodrigues BL, de Oliveira LFC (2005) Crystal structure and Raman spectra of rubidium hydrogen squarate. J Mol Struct 741(1–3):61–66. https://doi.org/10.1016/j.molstruc.2005.01.048

    Article  CAS  Google Scholar 

  34. Souza NLGD, Salles TF, Brandão HM, Edwards HGM, Oliveira LFCd (2015) Synthesis, vibrational spectroscopic and thermal properties of oxocarbon cross linked chitosan. J Braz Chem Soc 26:1247–1256. https://doi.org/10.5935/0103-5053.20150090

    Article  CAS  Google Scholar 

  35. Guanaes D, Bittencourt E, Eberlin MN, Sabino AA (2007) Influence of polymerization conditions on the molecular weight and polydispersity of polyepichlorohydrin. Eur Polym J 43(5):2141–2148. https://doi.org/10.1016/j.eurpolymj.2007.02.016

    Article  CAS  Google Scholar 

  36. Platzer N (1982) Polymer degradation—principles and practical applications, Wolfram Schnabel, MacMillan, New York, 1982, 227 pp. J Polym Sci Polym Lett Ed 20(9):509. https://doi.org/10.1002/pol.1982.130200907

    Article  Google Scholar 

  37. Souza NLGD, Brandão HM, de Oliveira LFC (2011) Spectroscopic and thermogravimetric study of chitosan after incubation in bovine rumen. J Mol Struct 1005(1–3):186–191. https://doi.org/10.1016/j.molstruc.2011.08.049

    Article  CAS  Google Scholar 

  38. Li B, Shan C-L, Zhou Q, Fang Y, Wang Y-L, Xu F, Han L-R, Ibrahim M, Guo L-B, Xie G-L, Sun G-C (2013) Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs 11(5):1534–1552. https://doi.org/10.3390/md11051534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Georgopoulos SL, Edwards HGM, de Oliveira LFC (2013) Raman spectroscopic analysis of the interaction between squaric acid and dimethylsulfoxide. Spectrochim Acta Part A Mol Biomol Spectrosc 111:54–61. https://doi.org/10.1016/j.saa.2013.03.052

    Article  CAS  Google Scholar 

  40. Nithya H, Selvasekarapandian S, Selvin PC, Kumar DA, Hema M, Kawamura J (2012) Laser Raman and conductivity studies of plasticized polymer electrolyte P(ECH-EO):propylenecarbonate:γ-butyrolactone:LiClO4. J Solid State Electrochem 16(5):1791–1797. https://doi.org/10.1007/s10008-011-1610-6

    Article  CAS  Google Scholar 

  41. Chae SY, Jang M-K, Nah J-W (2005) Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release 102(2):383–394. https://doi.org/10.1016/j.jconrel.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  42. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11. https://doi.org/10.1016/j.addr.2009.09.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank CNPq, CAPES and FAPEMIG (Brazilian agencies) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Luis G. D. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, N.L.G.D., Munk, M., Brandão, H.M. et al. Functionalization of poly(epichlorohydrin) using sodium hydrogen squarate: cytotoxicity and compatibility in blends with chitosan. Polym. Bull. 75, 4627–4639 (2018). https://doi.org/10.1007/s00289-018-2290-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2290-5

Keywords

Navigation