Skip to main content

The effect of kappa carrageenan and salt on thermoreversible gelation of methylcellulose

Abstract

Methylcellulose (MC) and kappa carrageenan (KCG) are widely used in food and pharmaceutical industries as a viscosity modifier, a gelling aid, and a film former due to their reversible thermal gelation properties. Thermoreversible gelation of MC/salt, MC/KCG/water, and MC/KCG/salt mixtures was investigated utilizing dynamic and steady shear rheological measurements. It was found that for the MC/salt mixture, gelation temperatures decreased linearly with increasing salt concentrations independent of valences of cations and molar concentrations of anions. For the MC/KCG blend, double gelation was not observed, and KCG is not influenced or disturbed the gelation properties of MC. Double gelation was observed for the mixture of MC/KCG/KCl for the low concentration of salts of 0.01 M KCl and 0.04 M KCl with the maximum moduli values for the mixture of MC/KCG/0.04 M KCl and then gradually decreased with increasing KCl salt concentration and eventually became similar to the gelation of MC solution. Therefore, KCl concentration played a major role in double gelation properties of MC/KCG/KCl mixture. It was also found that for the MC/KCG/KCl system, gelation transition matrices are linearly depending on salt concentration and independent of KCG and salt type. It was shown that for MC/salt mixture, solution rheology follows the principle of time–temperature superposition (TTS) below the gelation temperature. However, TTS failed above the gelation temperature. TTS also failed for MC/KCG and MC/KCG with low KCl concentration mixtures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Kumar V, Banker GS (1993) Chemically-modified cellulosic polymers. Drug Dev Ind Pharm 19(1–2):1–30

    Article  CAS  Google Scholar 

  2. Lin SY, Wang SL, Wei YS, Li MJ (2007) Temperature effect on water desorption from methylcellulose films studied by thermal FT-IR micro spectroscopy. Surf Sci 601:781–785

    Article  CAS  Google Scholar 

  3. Perez OE, Sanchez CC, Pilosof AM, Patino JM (2008) Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface. Food Hydrocoll 22:387–402

    Article  CAS  Google Scholar 

  4. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  PubMed  Google Scholar 

  5. Chen CH, Tsai CC, Chen W, Mi FL, Liang HF, Chen SC, Sung HW (2006) Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules 7(3):736–743

    Article  CAS  PubMed  Google Scholar 

  6. Guiseley KB, Stanley N, Whitehouse P (1980) chapter 5. In: Davidson R (ed) Industrial gums. McGraw-Hill, New York

    Google Scholar 

  7. Piculell L (2006) Gelling carrageenans. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. CRC Press, Boca raton

    Google Scholar 

  8. Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Polymer 22(3):161–173

    CAS  Google Scholar 

  9. Rotbaum Y, Parvari G, Eichen Y, Rittel D (2017) Static and dynamic large strain properties of methyl cellulose hydrogels. Macromolecules 50(12):4817–4826

    Article  CAS  Google Scholar 

  10. Kobayashi K, Huang C, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077

    Article  CAS  Google Scholar 

  11. Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18:7291–7298

    Article  CAS  Google Scholar 

  12. Haque A, Richardson RK, Morris ER, Gidley MJ, Caswell DC (1993) Thermogelation of methylcellulose. Part II: effect of hydroxypropyl substituents. Carbohydr Polym 22(3):175–186

    Article  CAS  Google Scholar 

  13. Lam YC, Joshi SC, Tan BK (2007) Thermodynamic characteristics of gelation for methyl-cellulose hydrogels. J Therm Anal Calorim 87(2):475–482

    Article  CAS  Google Scholar 

  14. Ford JL (1999) Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. Int J Pharm 179(2):209–228

    Article  CAS  PubMed  Google Scholar 

  15. Almeida N, Rakesh L, Zhao J (2014) Monovalent and divalent salt effects on thermogelation of aqueous hypromellose solutions. Food Hydrocoll 36:323–331

    Article  CAS  Google Scholar 

  16. Almeida N, Rakesh L, Zhao J (2014) Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt. Carbohydr Polym 99:630–637

    Article  CAS  PubMed  Google Scholar 

  17. Carlssona A, Karlströmb G, Lindman B (1990) Thermal gelation of nonionic cellulose ethers and ionic surfactants in water. Colloids Surf 47:147–165

    Article  Google Scholar 

  18. Ibbett RN, Philp K, Price DM (1992) 13C n.m.r. studies of the thermal behaviour of aqueous solutions of cellulose ethers. Polymer 33(19):4087–4095

    Article  CAS  Google Scholar 

  19. Kobayashi K, Huang C, Lodge TP (1993) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32(21):7070–7077

    Article  CAS  Google Scholar 

  20. Bodvika R, Dedinaitea A, Karlsonb L, Bergströma M, Bäverbäckc P, Pedersenc JS, Edwardsd K, Karlssond G, Vargaa I, Claessona PM (2010) Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids Surf A Physicochem Eng Asp 354:162–171

    Article  CAS  Google Scholar 

  21. Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53(2):145–153

    Article  CAS  Google Scholar 

  22. Liu SQ, Joshi SC, Lam YC, Tam KC (2008) Thermoreversible gelation of hydroxypropylmethylcellulose in simulated body fluids. Carbohydr Polym 72:133–143

    Article  CAS  Google Scholar 

  23. Lott JR, McAllister JW, Arvidson SA, Bates FS, Lodge TP (2013) Fibrillar structure of methylcellulose hydrogels. Biomacromolecules 14(8):2484–2488

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Wang C, Tam K, Li L (2004) Salt-assisted and salt-suppressed sol–gel transitions of methylcellulose in water. Langmuir 20(3):646–652

    Article  CAS  PubMed  Google Scholar 

  25. Xu Y, Wang C, Tam KC, Li L (2004) Salt-assisted and salt-suppressed sol–gel transitions of methylcellulose in water. Langmuir 20(3):646–652

    Article  CAS  PubMed  Google Scholar 

  26. Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). Langmuir 13:6074–6082

    Article  CAS  Google Scholar 

  27. Iijima M, Hatakeyama T, Takahashi M, Hatakeyama H (2007) Effect of thermal history on kappa-carrageenan hydrogelation by differential scanning calorimetry. Thermochim Acta 452(1):53–58

    Article  CAS  Google Scholar 

  28. Yuguchi Y, Thuy TTT, Urakawa H, Kajiwara K (2002) Structural characteristics of carrageenan gels: temperature and concentration dependence. Food Hydrocoll 16(6):515–522

    Article  CAS  Google Scholar 

  29. Kara S, Arda E, Kavzak B, Pekcan Ö (2006) Phase transitions of κ-carrageenan gels in various types of salts. J Appl Polym Sci 102(3):3008–3016

    Article  CAS  Google Scholar 

  30. Kara S, Tamerler C, Bermek H, Pekcan Ö (2003) Cation effects on sol–gel and gel–sol phase transitions of κ-carrageenan-water system. Int J Biol Macromol 31(4):177–185

    Article  CAS  PubMed  Google Scholar 

  31. Arda E, Kara S, Pekcan Ö (2009) Synergistic effect of the locust bean gum on the thermal phase transitions of κ-carrageenan gels. Food Hydrocoll 23(2):451–459

    Article  CAS  Google Scholar 

  32. Mangione M, Giacomazza D, Bulone D, Martorana V, San Biagio P (2003) Thermoreversible gelation of κ-Carrageenan: relation between conformational transition and aggregation. Biophys Chem 104(1):95–105

    Article  CAS  PubMed  Google Scholar 

  33. Takemasa M, Chiba A, Date M (2002) Counterion dynamics of κ-and ι-carrageenan aqueous solutions investigated by the dielectric properties. Macromolecules 35(14):5595–5600

    Article  CAS  Google Scholar 

  34. Thành TT, Yuguchi Y, Mimura M, Yasunaga H, Takano R, Urakawa H, Kajiwara K (2002) Molecular characteristics and gelling properties of the carrageenan family, 1. Preparation of novel carrageenans and their dilute solution properties. Macromol Chem Phys 203(1):15–23

    Article  Google Scholar 

  35. Ikeda S, Morris VJ, Nishinari K (2001) Microstructure of aggregated and nonaggregated κ-carrageenan helices visualized by atomic force microscopy. Biomacromolecules 2(4):1331–1337

    Article  CAS  PubMed  Google Scholar 

  36. MacArtain P, Jacquier J, Dawson K (2003) Physical characteristics of calcium induced κ-carrageenan networks. Carbohydr Polym 53(4):395–400

    Article  CAS  Google Scholar 

  37. Tomšič M, Prossnigg F, Glatter O (2008) A thermoreversible double gel: characterization of a methylcellulose and κ-carrageenan mixed system in water by SAXS, DSC and rheology. J Colloid Interface Sci 322(1):41–50

    Article  CAS  PubMed  Google Scholar 

  38. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New Jersey

    Google Scholar 

  39. Macosko CW (1994) Rheology: principles measurements and applications. Wiley-VCH, New Jersey

    Google Scholar 

  40. Liu SQ, Joshi SC, Lam YC (2008) Effects of salts in the hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. J Appl Polym Sci 109:363–372

    Article  CAS  Google Scholar 

  41. Thrimawithana TR, Young S, Dunstan DE, Alany RG (2010) Texture and rheological characterization of kappa and iota carrageenan in the presence of counter ions. Carbohydr Polym 82(1):69–77

    Article  CAS  Google Scholar 

  42. Desbrieres J, Hirrien M, Ross-Murphy SB (2000) Thermogelation of methylcellulose: rheological considerations. Polymer 41(7):2451–2461

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dow Pharma and Food Solutions for providing the methylcellulose materials. We also acknowledge the financial support given by The Science of Advanced Materials at Central Michigan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leela Rakesh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almeida, N., Rakesh, L. & Zhao, J. The effect of kappa carrageenan and salt on thermoreversible gelation of methylcellulose. Polym. Bull. 75, 4227–4243 (2018). https://doi.org/10.1007/s00289-017-2256-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2256-z

Keywords

  • Thermoreversible Gelation
  • Double Gelation
  • Gelation Temperature
  • Time-temperature Superposition (TTS)
  • Maximum Modularity Value