Skip to main content
Log in

Effect of interface in dielectric relaxation properties of PEMA–BaZrO3 nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

XRD peaks demonstrate the interaction of nanoparticles with polymer matrix. It is evident from the dielectric data that observed change in dielectric parameters would result from appropriate changes in chain mobility due to nanoparticles–polymer interactions. FT-IR spectra represent the significant changes in intensity, shape and position of the different vibrational bands corresponding to –OH stretching, C–O–C stretching, C–H stretching and C–O–C in C–H stretching modes occur as a result of the incorporation of BaZrO3 nanofiller. Thermally stimulated discharge current (TSDC) and transient discharging current study presented the dipolar and interfacial type of relaxations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites a small part of the story. J Miner Met Mater Soc 59:53–60

    Article  CAS  Google Scholar 

  2. Hanemann T, Vinga SD (2010) Polymer–nanoparticle composites from synthesis to modern applications. Materials 3:3468–3517

    Article  CAS  PubMed Central  Google Scholar 

  3. Paul DR, Robeson LM (2008) Polymer nanotechnology nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  4. Koch N (2007) Organic electronic devices and their functional interfaces. Chem Phys Chem 8:1438–1455

    Article  CAS  PubMed  Google Scholar 

  5. Krebs FC, Hoffmann SV, Jorgensen M (2003) Orientation effects in self-organized, highly conducting regioregular poly(3-hexylthiophene) determined by vacuum ultraviolet spectroscopy. Synth Met 138:471–474

    Article  CAS  Google Scholar 

  6. Green W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS (2002) Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org Electron 3:105–110

    Article  Google Scholar 

  7. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Frechet MJ (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15:1519–1522

    Article  CAS  Google Scholar 

  8. Salleo A, Chabinyc ML, Yang MS, Street RA (2002) Polymer thin-film transistors with chemically modified dielectric interfaces. Appl Phys Lett 81:4383–4385

    Article  CAS  Google Scholar 

  9. Corcoran N, Arias AC, Kim JS, MacKenzie JD, Friend RH (2003) Increased efficiency in vertically segregated thin-film conjugated polymer blends fo light-emitting diodes. Appl Phys Lett 82:299–301

    Article  CAS  Google Scholar 

  10. Rathore BS, Gaur MS, Singh KS (2012) Investigation of optical and thermally stimulated properties of SiO2 nanoparticles-filled polycarbonate. J Appl Poly Sci 126:960–968

    Article  CAS  Google Scholar 

  11. Shi Y, Liu J, Yang YJ (2007) Device performance and polymer morphology in polymer light emitting diodes the control of thin film morphology and device quantum efficiency. Appl Phys 87:4254–4263

    Article  Google Scholar 

  12. Arias AC, Corcoran N, Banach M, Friend RH, MacKenzie JD, Huck WTS (2002) Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing. Appl Phy Lett 80:1695–1697

    Article  CAS  Google Scholar 

  13. Bucci C, Fieshi R, Guidi G (1996) Ionic thermo currents in dielectrics. Phys Rev 148:816–823

    Article  Google Scholar 

  14. Arias AC, MacKenzie JD, Stevenson R, Halls JJM, Inbasekaran M, Woo EP, Richards D, Friend RH (2001) Photovoltaic performance and morphology of polyfluorene blends a combined microscopic and photovoltaic investigation. Macromolecules 34:6005–6013

    Article  CAS  Google Scholar 

  15. Reichmanis E, Ober CK, MacDonald SA, Iwayanagi T, Nishikubo T (1995) An analysis of process issues with the chemically amplified positive resists”, in microelectronics technology polymers in advanced imaging and packaging. ACS Symp Ser 614:04–20

    Article  CAS  Google Scholar 

  16. Kumar A, Nath R (1983) Isothermal transient current studies in cellulose acetate films. J Appl Polym Sci 28:2483–2489

    Article  CAS  Google Scholar 

  17. Bouzidi A, Jilani W, Guermazia KOH (2015) Study of the effects of various parameters on the transient current on In2O3 Sn filler effect in epoxy resin for dielectric application. Superlattices Microstruct 83:796–810

    Article  CAS  Google Scholar 

  18. Sebastian MT, Jantunen H (2010) Polymer–ceramic composites of 0–3 connectivity for circuits in electronics. Int J Appl Ceram Technol 7:415–434

    CAS  Google Scholar 

  19. Fawaz F, Mittal V (2015) Synthesis of polymer nanocomposites review of various techniques. Wiley-VCH verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  20. Jordana J, Jacobb KI, Tannenbaumc R, Sharafb MA, Jasiukd I (2005) Experimental trends in polymer nanocomposites a review. Mater Sci Eng A 393:1–11

    Article  CAS  Google Scholar 

  21. De Leon ALC, Chen Q, Palaganas Jerome O, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155

    Article  CAS  Google Scholar 

  22. Qi L, Petersson L, Liu T (2014) Review of recent activities on dielectric films for capacitor applications. J Int Counc Electr Eng 4:1–6

    Article  Google Scholar 

  23. Xiao M, Du BX (2016) Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt 1:34–42

    Article  Google Scholar 

  24. Gridnev SA (2002) Dielectric relaxation in disordered polar dielectrics. Ferroelectrics 266:507–545

    Article  Google Scholar 

  25. Buscaglia V, Buscaglia M, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorny J, Petzelt J (2006) Grain size and grain boundary-releted effects on the properties of nanocrystalline barium titanate ceramics. J Eur Ceram Soc 26:2889–2898

    Article  CAS  Google Scholar 

  26. Kinoshita K, Yamaji A (1976) Grain-size effects on dielectric properties in barium titanate ceramics. J Appl Phys 47:371

    Article  CAS  Google Scholar 

  27. Sainia DS, Bhattacharya D (2016) Electrical properties of BaZrO3 ceramic synthesized by flash pyrolysis process. AIP Conf Proc 020104:1724

    Google Scholar 

  28. Kumar R, Subramania A, Sundaram NTK, Kumar GV, Baskaran IJ (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. Membr Sci 300:104–110

    Article  CAS  Google Scholar 

  29. Mathew CM, Karthika B, Ulaganathan M, Rajendran S (2015) Bull Mater Sci 38:1

    Article  CAS  Google Scholar 

  30. Lee DC, Jang LW (1996) Preparation and charectrization of PMMA–clay hybrid composite by emulsion polymerization. J Appl Poly Sci 61:1117–1122

    Article  CAS  Google Scholar 

  31. Brosseau C, Queffelec P, Talbot P (2001) Microwave characterization of filled polymers. J Appl Phys 89:4532–4540

    Article  CAS  Google Scholar 

  32. Mathioudakis GN, Patsidis AC, Psarras GC (2014) Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim 116:27–33

    Article  CAS  Google Scholar 

  33. Tareev B (1979) Physics of dielectric materials. MIR Publications, Moscow

    Google Scholar 

  34. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion 152:291–294

    Article  Google Scholar 

  35. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733

    Article  CAS  PubMed Central  Google Scholar 

  36. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11:739–753

    Article  CAS  Google Scholar 

  37. Lewis TJ (2005) Interfaces nanometric dielectrics. J Phys D Appl Phys 38:202

    Article  CAS  Google Scholar 

  38. Tanaka H (2015) Epitaxial growth of oxide films and nanostructures. Handbook of crystal growth, 2nd edn. Elsevier, Amsterdam, pp 555–604

    Chapter  Google Scholar 

  39. Sun Y, Zhang Z, Wong CP (2005) Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46:2297–2305

    Article  CAS  Google Scholar 

  40. Cole RS and Cole RH, J Chem Phys 9:1941–341

  41. McCrum NG, Read BE, Willians G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New York, p 478

    Google Scholar 

  42. Batra AK, Edwards ME, Alomari A, Elkhaldy A (2015) Dielectric behavior of P(VDF-TrFE)/PZT nanocomposites films doped with multi-walled carbon nanotubes (MWCNT). Am J Mater Sci 5:55–61

    Google Scholar 

  43. Bishay ST (2000) Numerical methods for the calculation of the Cole–Cole parameters. Egypt J Sol 23:2

    Google Scholar 

  44. Sessler GM (1980) Physical principles of electrets, “Electrets”. Topics in applied physics, vol 33. Springer-Verlag, New York, pp 13–80

    Google Scholar 

  45. Lewis TJ (1994) Nanometric dielectrics. IEEE Trans DEI 1:812–825

    Article  CAS  Google Scholar 

  46. Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. Mater Res Bull 32:335–340

    Article  CAS  Google Scholar 

  47. Pillai PKC, Narula GK, Tripathi AK, Mendiratta RG (1983) Polarization and depolarization studies in polypropylene polycarbonate blends. Phys Rev B 27:2508–2514

    Article  CAS  Google Scholar 

  48. Pillai PKC, Brijesh Gupta K, Goel M (1981) Polarization studies by the TSC technique on a blend of cellulose acetate and polyvinyl acetate. J Polym Sci Polym Phy Ed 19:1461–1470

    Article  CAS  Google Scholar 

  49. Mudarra M, Belana J (1997) Study of poly(Methyl methacrylate) space-charge relaxation by Tsdc. Polymer 38:5815–5821

    Article  CAS  Google Scholar 

  50. Garg AK, Keller J, Datt SC, Chand N (2000) Polarization absorption currents in poly(vinyledene fluoride) poly(methylmethacrylate) blend system. Indian J Eng Mater Sci 7:40–46

    CAS  Google Scholar 

  51. Indolia AP, Gaur MS (2013) Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J Therm Anal Calorim 113:821–830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Directors, AIRF, JNU New Delhi (India) for FT-IR and XRD characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Goyal, P., Sharma, A. et al. Effect of interface in dielectric relaxation properties of PEMA–BaZrO3 nanocomposites. Polym. Bull. 75, 4003–4018 (2018). https://doi.org/10.1007/s00289-017-2248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2248-z

Keywords

Navigation