Skip to main content
Log in

Influence of natural ageing on mechanical, thermal and antimicrobial properties of thermoplastic elastomers containing silver nanoparticles and titanium dioxide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The current spread of pathogenic bacteria has brought about an increase in the research for products with antimicrobial properties. Thermoplastic elastomer (TPE) compounds are widely used for personal care objects and sporting goods manufacture and may be produced with the incorporation of antimicrobial additives. TPE compounds (based on styrene–ethylene/butylene–styrene, polypropylene and mineral oil) containing silver nanoparticles (AgNp, 0.05%) and titanium dioxide (TiO2, 4.0%) was exposed to natural ageing; a compound with no antimicrobial additive (Standard) was also tested. Antibacterial activity, mechanical and thermal characteristics of TPE samples was determined after 3, 6 and 9 months of exposure. After 9 months, both Standard and AgNp-loaded samples had a loss of mechanical properties, while the TiO2 sample was more resistant to the action of natural ageing. The infrared and thermal analysis suggested that not only the chain scission, but also the segregation of components that integrate the polymer matrix were one of the causes for mechanical properties loss. Both metal-loaded samples showed a decay of antibacterial efficiency after 9 months of exposure. The decay in antibacterial action can be assigned to the presence of dirt that provides a substrate to microbial proliferation and also avoid contact between the metal-containing surfaces and microorganisms cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shah AA, Hasan F, Hameed A, Ahmed S (2009) Role of microorganisms in biodegradation of plastics: basics and methods in biodegradation of synthetic and natural plastics. VDM Verlag Dr., Müller

    Google Scholar 

  2. Scott G (1997) Abiotic control of polymer biodegradation. Trends Polym Sci 5:361–368

    CAS  Google Scholar 

  3. Nichols D (2004) Biocides in plastics. Rapra Review Reports, UK

    Google Scholar 

  4. Cappitelli F, Sorlini C (2008) Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl Environ Microbiol 74(3):564–569. https://doi.org/10.1128/AEM.01768-07

    Article  CAS  PubMed  Google Scholar 

  5. Sudár A, López MJ, Keledi G, Vargas-García MC, Suárez-Estrella F, Moreno J, Burgstaller C, Pukánszky B (2013) Ecotoxicity and fungal deterioration of recycled polypropylene/wood composites: effect of wood content and coupling. Chemosphere 93:408–414. https://doi.org/10.1016/j.chemosphere.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  6. Wl Oliani, Parra DF, Lima LFCP, Lincopan N, Lugao AB (2015) Development of a nanocomposite of polypropylene with biocide action from silver nanoparticles. J Appl Polym Sci 132:42218. https://doi.org/10.1002/app.42218

    Article  CAS  Google Scholar 

  7. Tomacheski D, Pittol M, Ribeiro VF, Santana RMC (2016) Efficiency of silver-based antibacterial additives and its influence in thermoplastic elastomers. J Appl Polym Sci 133:43956. https://doi.org/10.1002/APP.43956

    Article  Google Scholar 

  8. Xing Y, Li X, Zhang L, Xu Q, Che Z, Li W, Bai Y, Li K (2012) Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog Org Coat 73:219–224. https://doi.org/10.1016/j.porgcoat.2011.11.005

    Article  CAS  Google Scholar 

  9. Yang T-C, Noguchi T, Isshiki M, Wu J-H (2014) Effect of titanium dioxide on chemical and molecular changes in PVC sidings during QUV accelerated weathering. Polym Degrad Stab 104:33–39. https://doi.org/10.1016/j.polymdegradstab.2014.03.023

    Article  CAS  Google Scholar 

  10. Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831. https://doi.org/10.1039/b818698g

    Article  CAS  Google Scholar 

  11. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. https://doi.org/10.1016/S0168-6445(03)00047-0

    Article  CAS  PubMed  Google Scholar 

  12. INMET (National Institute of Meteorology, Instituto Nacional de Meteorologia). http://www.inmet.gov.br/sonabra/pg_dspDadosCodigo.php?QTg4NA==. Accessed 18 May 2016

  13. Gulmine JV, Akcelrud L (2006) FTIR characterization of aged XLPE. Polym Test 25:932–942. https://doi.org/10.1016/j.polymertesting.2006.05.014

    Article  CAS  Google Scholar 

  14. Allen NS, Edge M, Mourelatou D, Wilkinson A, Liauwa CM, Parellada MD, Barrio JA, Quiteria VRS (2003) Influence of ozone on styrene–ethylene–butylene–styrene (SEBS) copolymer. Polym Degrad Stab 79:297–307

    Article  CAS  Google Scholar 

  15. Allen NS, Edge M, Wilkinson A, Liauw CM, Mourelatou D, Barrio J, Martínez-Zaporta MA (2001) Degradation and stabilisation of styrene–ethylene–butadiene–styrene (SEBS) block copolymer. Polym Degrad Stab 71:113–122

    Article  CAS  Google Scholar 

  16. Fechine GJM, Santos JAB, Rabello MS (2006) Avaliação da fotodegradação de poliolefinas através de exposição natural e artificial. Quim Nova 29(4):674–680

    Article  CAS  Google Scholar 

  17. Sierra CA, Galán Fatou JG, Parellada MD, Barrio JA (1997) Thermal and mechanical properties of poly-(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymers. Polymer 38(17):4325–4335

    Article  CAS  Google Scholar 

  18. Ohlsson B, Hassander H, Tornell B (1996) Blends and thermoplastic interpenetrating polymer networks of polypropylene and polystyrene-block-poly(ethylene-stat-butylene)-block-polystyrene triblock copolymer 1: morphology and structure-related properties. Polym Eng Sci 36(4):501–510

    Article  CAS  Google Scholar 

  19. Sengers WGF, Wübbenhorst M, Pickena SJ, Gotsis AD (2005) Distribution of oil in olefinic thermoplastic elastomer blends. Polymer 46:6391–6401. https://doi.org/10.1016/j.polymer.2005.04.094

    Article  CAS  Google Scholar 

  20. Karakaya N, Ersoy OG, Oral MA, Gonul T, Deniz V (2010) Effect of different fillers on physical, mechanical, and optical properties of styrenic-based thermoplastic elastomers. Polym Eng Sci. https://doi.org/10.1002/pen.21569

    Article  Google Scholar 

  21. Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Santos VAPM, Fernández-García M, Ferrer M (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:4134–4143. https://doi.org/10.1038/srep04134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  23. Kumar R, Howdle S, Münstedt H (2005) Polyamide/silver antimicrobials: effect of filler types on the silver ion release. J Biomed Mater Res Part B Appl Biomater 75B(2):311–319. https://doi.org/10.1002/jbm.b.30306

    Article  CAS  Google Scholar 

  24. Zhang Z, Wang S, Zhang J (2014) Large stabilizing effect of titanium dioxide on photodegradation of PVC/α-methylstyrene-acrylonitrile copolymer/impact modifier-matrix composites. J Polym Compos 35:2365–2375. https://doi.org/10.1002/pc.22904

    Article  CAS  Google Scholar 

  25. Gupta S, Chandra T, Sikder A, Menon A, Bhowmick AK (2008) Accelerated weathering behavior of poly(phenylene ether)-based TPE. J Mater Sci 43:3338–3350. https://doi.org/10.1007/s10853-008-2484-6

    Article  CAS  Google Scholar 

  26. Lonnberg V, Starck P (1997) Comparison of the weather resistance of different thermoplastic elastomers. Polym Test 16:133–145

    Article  CAS  Google Scholar 

  27. Brydson JA (1999) Aliphatic polyolefins other than polyethylene, and diene rubbers. Plastics materials, 7th edn. Butterworth-Heinemann, Wobum, pp 247–310

    Chapter  Google Scholar 

  28. Sahin S, Yayla P (2005) Effects of processing parameters on the mechanical properties of polypropylene random copolymer. Polym Test 24:1012–1021

    Article  CAS  Google Scholar 

  29. Najafi SK, Mostafazadeh-Marznaki M, Chaharmahali M, Tajvidi M (2009) Effect of thermomechanical degradation of polypropylene on mechanical properties of wood/polypropylene composites. J Compos Mater 43(22):2543–2554. https://doi.org/10.1177/0021998309345349

    Article  CAS  Google Scholar 

  30. Mouffok S, Kaci M (2015) Artificial weathering effect on the structure and properties of polypropylene/polyamide-6 blends compatibilized with PP-g-MA. J Appl Polym Sci 132:41722. https://doi.org/10.1002/APP.41722

    Article  Google Scholar 

  31. Rouillon C, Bussiere P-O, Desnoux E, Collin S, Vial C, Therias S, Gardette J-L (2016) Is carbonyl index a quantitative probe to monitor polypropylene photodegradation? Polym Degrad Stab 128:200–208. https://doi.org/10.1016/j.polymdegradstab.2015.12.011

    Article  CAS  Google Scholar 

  32. Lv Y, Huang Y, Yang J, Kong M, Yang H, Zhao J, Li G (2015) Outdoor and accelerated laboratory weathering of polypropylene: a comparison and correlation study. Polym Degrad Stab 112:145–159. https://doi.org/10.1016/j.polymdegradstab.2014.12.023

    Article  CAS  Google Scholar 

  33. Panicker SS, Ninan KN (1997) Influence of molecular weight on the thermal decomposition of hydroxyl terminated polybutadiene. Thermochim Acta 290:191–197

    Article  CAS  Google Scholar 

  34. Billmeyer FW Jr (1984) Polymer structure and physical properties. In: Textbook of polymer, 3rd edn. Wiley, USA, pp 330–355

    Google Scholar 

  35. Allen NS, Edge M, Ortega A, Sandoval G, Liauw CM, Verran J, Stratton J, McIntyre RB (2004) Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles. Polym Degrad Stab 85:927–946. https://doi.org/10.1016/j.polymdegradstab.2003.09.024

    Article  CAS  Google Scholar 

  36. Eggins HOW, Mills J, Holt A, Scott G (1971) Biodeterioration and biodegradation of synthetic polymers. In: Sykes G, Skinner FA (eds) Microbial aspects of pollution. Academic Press, London, pp 267–277

    Chapter  Google Scholar 

  37. Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104. https://doi.org/10.1007/s00253-004-1584-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FINEP for the financial support (03.13.0280.00) and Softer Brasil Compostos Termoplásticos LTDA for infrastructure support. Special thanks to additive supplier TNS Nanotecnologia Ltda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiane Tomacheski.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomacheski, D., Pittol, M., Simões, D.N. et al. Influence of natural ageing on mechanical, thermal and antimicrobial properties of thermoplastic elastomers containing silver nanoparticles and titanium dioxide. Polym. Bull. 75, 3917–3934 (2018). https://doi.org/10.1007/s00289-017-2245-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2245-2

Keywords

Navigation