Skip to main content
Log in

Fabrication and characterization of poly(butyl acrylate-co-methyl methacrylate)-polypyrrole nanofibers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, poly(buty acrylate-co-methyl methacrylate)/polypyrrole P(BA-co-MMA)/PPy nanofibers were produced by using electrospinning method. FTIR–ATR measurements indicated the presence of PPy in the composite nanofiber structure. Scanning electron microscopy (SEM) images showed that the diameter of nanofibers was dependent on PPy content and the fiber diameter was decreased with increasing initial pyrrole concentration. A relation between contact angle and diameter of nanofibers which is related with PPy content was observed. P(BA-co-MMA)/PPy4 which has the highest amount of PPy, exhibited the smallest fiber diameter and the highest contact angle. Mechanical properties of P(BA-co-MMA)/PPy became poor compared to P(BA-co-MMA). By the increase of PPy content in the nanofibers, increase in the alternating current (AC) conductivities was observed. In addition, the AC conductivity of nanofibers was increased with frequency, particularly in the higher frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abaci U, Guney HY, Kadiroglu U (2013) Morphological and electrochemical properties of PPy, PAni bilayer films and enhanced stability of their electrochromic devices (PPy/PAni–PEDOT, PAni/PPy–PEDOT). Electrochim Acta 96:214–224

    Article  CAS  Google Scholar 

  2. Cetiner S (2014) Dielectric and morphological studies of nanostructured polypyrrole-coated cotton fabrics. Text Res J 84(14):1463–1475

    Article  Google Scholar 

  3. Cheng F, Tang W, Li C, Chen J, Liu H, Shen P, Dou S (2006) Conducting poly (aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/poly (aniline) rechargeable batteries. Chemistry–A. Eur J 12(11):3082–3088

    Article  CAS  Google Scholar 

  4. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715

    Article  CAS  Google Scholar 

  5. Sahoo S, Dhibar S, Hatui G, Bhattacharya P, Das CK (2013) Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54(3):1033–1042

    Article  CAS  Google Scholar 

  6. Wang H, Ding J, Lee B, Wang X, Lin T (2007) Polypyrrole-coated electrospun nanofibre membranes for recovery of Au(III) from aqueous solution. J Membr Sci 303(1):119–125

    Article  CAS  Google Scholar 

  7. Wang Y, Jia W, Strout T, Schempf A, Zhang H, Li B, Cui J, Lei Y (2009) Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers. Electroanalysis 21(12):1432–1438

    Article  CAS  Google Scholar 

  8. Balkan T, Sarac AS (2011) Synthesis and characterization of electrically conductive composite films of polypyrrole/poly (acrylonitrile-co-styrene). Fibers Polym 12(5):565

    Article  CAS  Google Scholar 

  9. Kang TS, Lee SW, Joo J, Lee JY (2005) Electrically conducting polypyrrole fibers spun by electrospinning. Synth Met 153(1–3):61–64

    Article  CAS  Google Scholar 

  10. Solcova O, Balkan T, Guler Z, Morozova M, Dytrych P, Sarac AS (2014) New preparation route of TiO2 nanofibers by electrospinning: spectroscopic and thermal characterizations. Sci Adv Mater 6(12):2618–2624

    Article  CAS  Google Scholar 

  11. Cetiner S, Kalaoglu F, Karakas H, Sarac AS (2010) Electrospun nanofibers of polypyrrole-poly (acrylonitrile-co-vinyl acetate). Text Res J 80(17):1784–1792

    Article  CAS  Google Scholar 

  12. Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47(5):1597–1603

    Article  CAS  Google Scholar 

  13. Merlini C, Barra G, Araujo TM, Pegoretti A (2014) Electrically pressure sensitive poly (vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv 4(30):15749–15758

    Article  CAS  Google Scholar 

  14. Zhu G-Q, Li G-C, Wang P (2011) Surface morphology and properties of poly (γ-benzyl l-glutamate)/poly (butyl acrylate-co-methyl methacrylate) blend film. Polym Plast Technol Eng 50(14):1470–1474

    Article  CAS  Google Scholar 

  15. G-q Zhu, F-g Wang, Gao Q-c Xu, K-j Liu Y-y (2014) Morphology and properties of poly (l-lactic acid) film improved by flexible poly (butyl acrylate-co-methyl methacrylate). Asian J Chem 26(3):660

    Google Scholar 

  16. Zhu G-Q, Wang F-G, Tan H-S, Gao Q-C, Liu Y-Y (2014) Properties of poly (lactic acid-co-glycolic acid) film modified by blending with polyurethane. Chem Pap 68(2):246–252

    Article  CAS  Google Scholar 

  17. Jingshui X, Yangchuan K, Qian Z, Xianglong H (2013) Synthesis and properties of poly (butyl acrylate-co-methyl methacrylate) copolymer microspheres of tunable size using suspension polymerization. Compos Interfaces 20(3):165–176

    Article  Google Scholar 

  18. Qiu Y, Chen Y, Zhang GG, Yu L, Mantri RV (2016) Developing solid oral dosage forms: pharmaceutical theory and practice. Academic press, Cambridge

    Google Scholar 

  19. Halacheva SS, Adlam DJ, Hendow EK, Freemont TJ, Hoyland J, Saunders BR (2014) Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly (acrylic acid): the effect of copolymer composition on gel properties. Biomacromol 15(5):1814–1827

    Article  CAS  Google Scholar 

  20. Seal B, Otero T, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34(4):147–230

    Article  Google Scholar 

  21. Cetiner S, Kalaoglu F, Karakas H, Sarac AS (2011) Characterization of conductive poly (acrylonitrile-co-vinyl acetate) composites: matrix polymerization of pyrrole derivatives. Fibers Polym 12(2):151–158

    Article  CAS  Google Scholar 

  22. Avcı MZ, Sarac AS (2013) Transparent poly (methyl methacrylate-co-butyl acrylate) nanofibers. J Appl Polym Sci 130(6):4264–4272

    Google Scholar 

  23. Manders BG, Smulders W, Aerdts AM, Van Herk AM (1997) Determination of reactivity ratios for the system methyl methacrylate-n-butyl methacrylate. Macromolecules 30(2):322–323

    Article  CAS  Google Scholar 

  24. Kim YS, Wright JB, Grunlan JC (2008) Influence of polymer modulus on the percolation threshold of latex-based composites. Polymer 49(2):570–578

    Article  CAS  Google Scholar 

  25. Cetiner S, Kalaoglu F, Karakas H, Sarac AS (2011) Dielectric, FTIR spectroscopic and atomic force microscopic studies on polypyrrole-poly(acrylonitrile-co-vinyl acetate) composites. Polym Compos 32(4):546–557

    Article  CAS  Google Scholar 

  26. Park JY, Han SW, Lee IH (2007) Preparation of electrospun porous ethyl cellulose fiber by THF/DMAc binary solvent system. J Ind Eng Chem Seoul 13(6):1002

    CAS  Google Scholar 

  27. Giray D, Balkan T, Dietzel B, Sarac AS (2013) Electrochemical impedance study on nanofibers of poly (m-anthranilic acid)/polyacrylonitrile blends. Eur Polym J 49(9):2645–2653

    Article  CAS  Google Scholar 

  28. Azioune A, Chehimi MM, Miksa B, Basinska T, Slomkowski S (2002) Hydrophobic protein–polypyrrole interactions: the role of van der Waals and Lewis acid–base forces as determined by contact angle measurements. Langmuir 18(4):1150–1156

    Article  CAS  Google Scholar 

  29. Han D, Steckl AJ (2009) Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25(16):9454–9462

    Article  CAS  Google Scholar 

  30. Haquea R, Speara S, Dalya D, Rogersb R, Vemugantic S, Haquec A (2009) Electrical and mechanical properties of polypyrrole-cellulose fiber composites synthesized via a novel chemical processing route. ICCM-17 conferences and proceedings, Edinburgh, Scotland July 27–31

  31. Sahoo NG, Jung YC, Goo NS, Cho JW (2005) Conducting shape memory polyurethane-polypyrrole composites for an electroactive actuator. Macromol Mater Eng 290(11):1049–1055

    Article  CAS  Google Scholar 

  32. Harun MH, Saion E, Kassim A, Hussain MY, Mustafa IS, Omer MAA (2008) Temperature dependence of ac electrical conductivity of PVA-PPy-FeCl3 composite polymer films. Malays Polym J 3:24–31

    Google Scholar 

  33. Murugendrappa M, Parveen A, Prasad MA (2007) Synthesis, characterization and ac conductivity studies of polypyrrole–vanadium pentaoxide composites. Mater Sci Eng A 459(1):371–374

    Article  Google Scholar 

  34. Vishnuvardhan T, Kulkarni V, Basavaraja C, Raghavendra S (2006) Synthesis, characterization and ac conductivity of polypyrrole/Y2O3 composites. Bull Mater Sci 29(1):77–83

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sezai Sarac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akcoren, D., Avci, M.Z., Guler Gokce, Z. et al. Fabrication and characterization of poly(butyl acrylate-co-methyl methacrylate)-polypyrrole nanofibers. Polym. Bull. 75, 1607–1617 (2018). https://doi.org/10.1007/s00289-017-2110-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2110-3

Keywords

Navigation