Skip to main content
Log in

Refraction and polarization properties of some fluorinated imidic polymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Several new fluorinated imidic polymers were analyzed from optical and dielectric point of view. The main achievement of this work consists in the establishment of novel insights in the structure–property correlation by optimization of certain monomer features. Group contribution and Bicerano theories were utilized to calculate molar volume and molar refraction and atomic connectivity indices, respectively. These are further used to obtain the refractive index and from the latter the dielectric constant. Both macromolecular architecture and backbone polarizability affect refraction and polarization properties of specimens. The values of refractive index are reduced by using diamine residues that decrease chain packing and increase density of –CF3 groups, whereas inserting dianhydride moieties with less bulky character and smaller numbers of low polarizable groups led to the reverse result. The resulted data are important in controlling the physical performance of imidic polymers as demanded by electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Damaceanu MD, Rusu RD, Bruma M, Jarzabek B (2010) Photo-optical properties of poly(oxadiazole-imide)s containing naphthalene rings. Polym J 42:663–669

    Article  CAS  Google Scholar 

  2. Barzic AI, Stoica I, Popovici D, Vlad S, Cozan V, Hulubei C (2013) An insight on the effect of rubbing textile fiber on morphology of some semi-alicyclic polyimides for liquid crystal orientation. Polym Bull 70:1553–1574

    Article  CAS  Google Scholar 

  3. Won DS, Lee GY, Lee JY (2008) Synthesis of novel polyimide with highly enhanced thermal stability of second harmonic generation for electro-optic applications. Polym Bull 61:43–51

    Article  CAS  Google Scholar 

  4. Kim JH, Jang HN, Lee JY (2008) Preparation of novel polyimides with high thermal stability of dipole alignment for electro-optic applications. Polym Bull 60:181–189

    Article  CAS  Google Scholar 

  5. Popovici D, Barzic AI, Barzic RF, Vasilescu DS, Hulubei C (2016) Semi-alicyclic polyimide precursors: structural, optical and biointerface evaluation. Polym Bull 73:331–344

    Article  CAS  Google Scholar 

  6. Barzic AI, Barzic RF (2015) Optical properties of polysaccharide/polylactide blends. UPB Sci Bull Ser A 77:293–302

    Google Scholar 

  7. Wang LD, Zhang T, Li RZ, Zhang XL, Song YJ (2015) Synthesis and characterization of cross-linkable fluorinated polyimide for optical waveguide. Appl Phys A 118:655–664

    Article  CAS  Google Scholar 

  8. Ni HJ, Liu JG, Wang ZH, Yang SY (2015) A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J Ind Eng Chem 28:16–27

    Article  CAS  Google Scholar 

  9. Hulubei C, Hamciuc E, Bruma M (2007) New polyimides based on epiclon. Rev Roum Chim 52:1063–1069

    CAS  Google Scholar 

  10. Mathews AS, Kim D, Kim Y, Kim I, Ha CS (2008) Synthesis and characterization of soluble polyimides functionalized with carbazole moieties. J Polym Sci A 46:8117–8130

    Article  CAS  Google Scholar 

  11. Bruma M, Damaceanu MD, Constantin CP, Belomoina NM (2013) Study of fluorinated polyimides containing fused aromatic rings. Rev Roum Chim 58:121–127

    CAS  Google Scholar 

  12. Barzic AI, Rusu RD, Stoica I, Damaceanu MD (2014) Chain flexibility versus molecular entanglement response to rubbing deformation in designing poly(oxadiazole-naphthylimide)s as liquid crystal orientation layers. J Mater Sci 49:3080–3098

    Article  CAS  Google Scholar 

  13. Stohr J, Samant MG (1999) Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model. J Electron Spectrosc Rel Phenom 98–99:189–207

    Article  Google Scholar 

  14. Jiang W, Wang D, Guana S, Gao H, Zhao Y, Jiang Z, Gao W, Zhang D, Zhang D (2008) Sul-containing fluorinated polyimides for optical waveguide device. J Photochem Photobiol A 197:426–433

    Article  CAS  Google Scholar 

  15. Cosutchi AI, Nica SL, Hulubei C, Homocianu M, Ioan S (2012) Effects of the aliphatic/aromatic structure on the miscibility, thermal, optical, and rheological properties of some polyimide blends. Polym Eng Sci 52:1429–1439

    Article  CAS  Google Scholar 

  16. Barzic AI, Stoica I, Fifere N, Dobromir M, Hulubei C, Dorohoi DO, Harabagiu V (2013) Transparency and absorption edges of disiloxane modified copolyimides. J Mol Struct 1044:206–214

    Article  CAS  Google Scholar 

  17. Jin X, Zhu D (2008) Influence of curing temperature on the optical properties of fluorinated polyimide thin films. Eur Polym J 44:3571–3577

    Article  CAS  Google Scholar 

  18. Takasaki T, Kuwana Y, Takahashi T, Hayashida S (2000) Synthesis and optical properties of polyimides. J Polym Sci A 38:4832–4838

    Article  CAS  Google Scholar 

  19. Lorenz LV (1880) Ueber die refractionsconstante. Wied Ann Phys 11:70–103

    Article  Google Scholar 

  20. Lorentz HA (1880) Ueber die Beziehung zwischen der Fortpflanzungeschwindigkeit des Lightes und der Körperdichte. Wied Ann Phys 9:641–665

    Article  Google Scholar 

  21. Bicerano J (2002) Prediction of polymer properties, 3rd edn. Marcel Dekker, New York

    Book  Google Scholar 

  22. Banerjee S (2015) Handbook of specialty fluorinated polymers–preparation, properties, and applications. Elsevier, Amsterdam

    Google Scholar 

  23. Kute V, Banerjee S (2007) Synthesis, characterization, and properties of novel soluble semifluorinated poly(ether imide)s. J Appl Polym Sci 103:3025–3044

    Article  CAS  Google Scholar 

  24. Groh W, Zimmermann A (1991) What is the lowest refractive index of an organic polymer? Macromolecules 24:6660–6663

    Article  CAS  Google Scholar 

  25. Tong XC (2014) Advanced materials for integrated optical waveguides. Springer, Geneva

    Book  Google Scholar 

  26. Ghosh MK, Mittal KL (1996) Polyimides: fundamentals and applications. Marker Dekker, New York

    Google Scholar 

  27. Bacosca I, Hamciuc E, Szesztay M, Szesztay M (2009) Modified aromatic polyimides with flexible groups. Rev Roum Chim 54:1023–1029

    CAS  Google Scholar 

  28. Cosutchi AI, Hulubei C, Buda M, Botila T, Ioan S (2007) Effects of chemical structure on the electrical properties of some polymers with imidic structure. e-Polymers 7:793–803

    Article  Google Scholar 

  29. Gray PR, Hurst PJ, Lewis SH, Meyer RG (2009) Analysis and design of analog integrated circuits. Wiley, New York

    Google Scholar 

  30. Deligoz H, Özgümüş S, Yalçınyuva T, Yıldırım S, Deger D, Ulutaş K (2005) A novel cross-linked polyimide film: synthesis and dielectric properties. Polymer 46:3720–3729

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, Project PN-II-RU-TE-2014-4-2976, No. 256/1.10.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreea Irina Barzic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albu, R.M., Nica, S.L. & Barzic, A.I. Refraction and polarization properties of some fluorinated imidic polymers. Polym. Bull. 75, 1535–1546 (2018). https://doi.org/10.1007/s00289-017-2108-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2108-x

Keywords

Navigation