Advertisement

Polymer Bulletin

, Volume 75, Issue 4, pp 1519–1533 | Cite as

The role of prepared ZnO nanoparticles on improvement of mechanical and antibacterial properties of flexible polyurethane foams: experimental modeling

  • M. S. Seyed Dorraji
  • M. H. Rasoulifard
  • M. Shajeri
  • H. R. Ashjari
  • M. Azizi
  • M. Rastgouy-Houjaghan
Original Paper
  • 119 Downloads

Abstract

The antibacterial polyurethane foam-ZnO nanocomposites with high strength are prepared along with reducing the amount of consumable tin catalyst. The effect of three key parameters on the foams strength (weight percentage of ZnO nanoparticles, isocyanate index, and amount of tin catalyst) is optimized using response surface methodology. The cellular morphology and matrix structure of prepared foams were investigated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy respectively. In addition, using tensile tests, the optimum conditions found for the maximum tensile strength (193.5 kPa) were isocyanate index: 109, tin catalyst: 0.14 g per 100 g polyol, and weight percentage of ZnO nanoparticles: 1.5 with good agreement between the predicted and experimental values. Moreover, the results of compression strength of the samples showed that the resistance to compression of the optimal nanocomposite was increased in comparison with the neat foams. The antibacterial activity of the optimal nanocomposite was investigated against Escherichia coli and Staphylococcus aureus bacteria. Eventually, the results showed that the synthetic foam with optimal conditions in addition to high strength compared to pure foam requires less tin catalyst and has appropriate antibacterial properties.

Keywords

Polyurethane foam nanocomposite Tin catalyst High strength RSM Antibacterial 

Notes

Acknowledgements

The authors thank the University of Zanjan, Iran for financial and other supports.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Savelyev Y, Veselov V, Markovskaya L, Savelyeva O, Akhranovich E, Galatenko N, Robota L, Travinskaya T (2014) Preparation and characterization of new biologically active polyurethane foams. Mater Sci Eng C 45:127–135CrossRefGoogle Scholar
  2. 2.
    Verdejo R, Stämpfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez M, Brühwiler P, Shaffer M (2009) Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Compos Sci Technol 69:1564–1569CrossRefGoogle Scholar
  3. 3.
    Fabris H (1976) Advances in urethane science and technology. Technomic, New YorkGoogle Scholar
  4. 4.
    Woods G (1987) ICI polyurethanes. Wiley, New YorkGoogle Scholar
  5. 5.
    Lamba NMK, Woodhouse KA, Cooper SL (1998) Polyurethanes in biomedical applications. CRC Press, FloridaGoogle Scholar
  6. 6.
    Harikrishnan G, Patro TU, Khakhar D (2006) Polyurethane foam-clay nanocomposites: nanoclays as cell openers. Ind Eng Chem Res 45:7126–7134CrossRefGoogle Scholar
  7. 7.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Dagostin V, Golçalves D, Pacheco C, Almeida W, Thomé I, Pich C, Paula M, Silva L, Angioletto E, Fiori M (2010) Bactericidal polyurethane foam mattresses: microbiological characterization and effectiveness. Mater Sci Eng C 30:705–708CrossRefGoogle Scholar
  9. 9.
    Abhilash M (2010) Insilico analysis of cranberry proanthocyanidin epicatechin (4beta-8, 2beta-0-7) as an inhibitor for modelled afimbrial adhesin virulence protein of uropathogenic Escherichia coli. Int J Pharm Biol Sci 1:1–7Google Scholar
  10. 10.
    Shi LE, Xing L, Hou B, Ge H, Guo X, Tang Z (2010) Inorganic nano mental oxides used as anti-microorganism agents for pathogen control. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial, 2nd edn. Formatex Research Center, SpainGoogle Scholar
  11. 11.
    Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3:3654–3674CrossRefGoogle Scholar
  12. 12.
    Chang YC (2014) ZnO nanopinecone arrays with enhanced photocatalytic performance in sunlight. RSC Adv 4:20273–20280CrossRefGoogle Scholar
  13. 13.
    Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microb 77:2325–2331CrossRefGoogle Scholar
  14. 14.
    Maddahi P, Shahtahmasebi N, Kompany A, Mashreghi M, Safaee S, Roozban F (2014) Effect of doping on structural and optical properties of ZnO nanoparticles: study of antibacterial properties. Mater Sci Pol 32:130–135CrossRefGoogle Scholar
  15. 15.
    Ebrahimiasl S, Zakaria A, Kassim A, Basri SN (2015) Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities. Int J Nanomed 10:217Google Scholar
  16. 16.
    Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym 65:46–62CrossRefGoogle Scholar
  17. 17.
    Timofeeva L, Kleshcheva N (2011) Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol 89(3):475–492CrossRefGoogle Scholar
  18. 18.
    Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71CrossRefGoogle Scholar
  19. 19.
    Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339CrossRefGoogle Scholar
  20. 20.
    Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511CrossRefGoogle Scholar
  21. 21.
    Booshehri AY, Wang R, Xu R (2015) Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chem Eng J 262:999–1008CrossRefGoogle Scholar
  22. 22.
    Ananth A, Dharaneedharan S, Heo MS, Mok YS (2015) Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem Eng J 262:179–188CrossRefGoogle Scholar
  23. 23.
    Ashton Acton Q (2013) Carbamates—advances in research and application. Scholarly Editions, Atlanta, GeorgiaGoogle Scholar
  24. 24.
    Seyed Dorraji MS, Aber S, Hosseini M, Raghibi-Boroujeni M, Ahadzadeh I (2009) Preparation of ZnO, ZnFe2O4 and ZnO-SnO2 nanocrystals and investigation of their photocatalytic activity. Int J Nanotechnol 6:984–996CrossRefGoogle Scholar
  25. 25.
    Wang JX, Wen LX, Wang ZH, Chen JF (2006) Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater Chem Phys 96:90–97CrossRefGoogle Scholar
  26. 26.
    Jayakumar R, Lee YS, Rajkumar M, Nanjundan S (2004) Synthesis, characterization, and antibacterial activity of metal-containing polyurethanes. J Appl Polym Sci 91:288–295CrossRefGoogle Scholar
  27. 27.
    Mohammadi A, Lakouraj MM, Barikani M (2014) Preparation and characterization of p-tert-butyl thiacalix [4] arene imbedded flexible polyurethane foam: an efficient novel cationic dye adsorbent. React Funct Polym 83:14–23CrossRefGoogle Scholar
  28. 28.
    Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63CrossRefGoogle Scholar
  29. 29.
    de Mello D, Pezzin SH, Amico SC (2009) The effect of post-consumer PET particles on the performance of flexible polyurethane foams. PolymTest 28:702–708Google Scholar
  30. 30.
    Rostamiyan Y, Fereidoon A, Mashhadzadeh AH, Ashtiyani MR, Salmankhani A (2015) Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos Part B Eng 69:304–316CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Zhang S, Choi P (2008) Effects of wood fiber content and coupling agent content on tensile properties of wood fiber polyethylene composites. Holz als Roh-und Werkstoff 66:267–274CrossRefGoogle Scholar
  32. 32.
    Montgomery DC (1997) Design and analysis of experiment, 5th edn. Wiley, New YorkGoogle Scholar
  33. 33.
    Vaez M, Zarringhalam Moghaddam A, Alijani S (2012) Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology based on the central composite design with immobilized titania nanoparticles. Ind Eng Chem Res 51:4199–4207CrossRefGoogle Scholar
  34. 34.
    Wang T, Yin J, Zheng Z, Mao Z (2012) Optimization of reaction conditions for polyurethane foam synthesis with liquefied corn stalk by response surface methodology. J Appl Polym Sci 125:278–282CrossRefGoogle Scholar
  35. 35.
    Zhang C, Li J, Hu Z, Zhu F, Huang Y (2012) Correlation between the acoustic and porous cell morphology of polyurethane foam: effect of interconnected porosity. Mater Des 41:319–325CrossRefGoogle Scholar
  36. 36.
    Ashida K (2006) Polyurethane and related foams. CRC Press, New YorkCrossRefGoogle Scholar
  37. 37.
    Li J, Hong R, Li M, Li H, Zheng Y, Ding J (2009) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coat 64:504–509CrossRefGoogle Scholar
  38. 38.
    Javni I, Zhang W, Karajkov V, Petrovic Z, Divjakovic V (2002) Effect of nano-and micro-silica fillers on polyurethane foam properties. J Cell Plast 38:229–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. S. Seyed Dorraji
    • 1
  • M. H. Rasoulifard
    • 1
  • M. Shajeri
    • 1
  • H. R. Ashjari
    • 1
  • M. Azizi
    • 1
  • M. Rastgouy-Houjaghan
    • 1
  1. 1.Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran

Personalised recommendations