Skip to main content
Log in

High-performance nanocomposites synergistically reinforced by two-dimensional montmorillonite and zero-dimensional nanoTiO2

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Comprehensive high-performance epoxy nanocomposites were successfully prepared by co-incorporating two-dimensional montmorillonite (MMT) and zero-dimensional nanoTiO2 into epoxy. Mechanical tests and thermal analyses showed that the resulting epoxy/MMT/nanoTiO2 nanocomposites obtained great improvements over pure epoxy, epoxy/MMT nanocomposites, and epoxy/nanoTiO2 nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temperature. The best performance occurred with the nanocomposite containing 5 phr MMT/nanoTiO2. At this loading, the tensile modulus increased by 154.75, 35.69, and 89.56%, the tensile strength by 81.53, 143.46, and 22.01%, the flexural modulus by 21.12, 6.04, and 3.31%, the flexural strength by 25.25, 16.98, and 9.73%, the notch impact strength by 65.57, 37.23, and 25.94%, the glass transition temperature by 11.3, 12.2, and 11.4 °C, and the thermal decomposition temperature by 15.3, 3.0, and 3.2 °C as compared with those of pure epoxy, 5 phr epoxy/MMT nanocomposite and 5 phr epoxy/nanoTiO2 nanocomposite, respectively. X-ray diffraction and transmission electron microscopy inspection revealed that in the epoxy/MMT/nanoTiO2 nanocomposites, the MMT was completely exfoliated into two-dimensional nanoscale mono-platelets, which formed special intermingled structure with the zero-dimensional nanoTiO2 spheres. This study suggests that co-incorporating two proper, dimensionally different nanomaterials into polymer matrices could be a pathway to success in preparing comprehensive high-performance polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kondyurin A, Bilek M (2010) Etching and structure transformations in uncured epoxy resin under rf-plasma and plasma immersion ion implantation. Nucl Instrum Methods Phys Res Sec A 268(10):1568–1580

    Article  CAS  Google Scholar 

  2. Jang JS, Varischetti J, Lee GW, Suhr J (2011) Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites. Compos Part A 42(1):98–103

    Article  Google Scholar 

  3. Strachota A, Rodzeń K, Ribot F, Perchacz M, Trchová M, Steinhart M, Strachota B (2014) Tin-based “super-POSS” building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer 55(16):3498–3515

    Article  CAS  Google Scholar 

  4. Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Wohlleben W (2014) Release characteristics of selected carbon nanotube polymer composites. Carbon 68(3):33–57

    Article  CAS  Google Scholar 

  5. Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers—a review. ACS Appl Mater Interfaces 6(9):6069–6087

    Article  CAS  Google Scholar 

  6. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237(5):411–420

    Article  CAS  Google Scholar 

  7. Bahramian AR, Ahmadi LS, Kokabi M (2014) Improvement of ablation and heat shielding performance of carbon fiber reinforced composite using graphite and kaolinite nanopowders. Iran Polym J 23(12):979–985

    Article  CAS  Google Scholar 

  8. Bahrami M, Givi MKB, Dehghani K, Parvin N (2014) On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater Des 53(1):519–527

    Article  CAS  Google Scholar 

  9. Zaragoza J, Babhadiashar N, O’Brien V, Chang A, Blanco M, Zabalegui A (2015) Experimental investigation of mechanical and thermal properties of silica nanoparticle-reinforced poly(acrylamide) nanocomposite hydrogels. PLoS One 10(8):e0136293

    Article  Google Scholar 

  10. Salehian H, Jahromi SAJ (2014) Effect of titanium dioxide nanoparticles on mechanical properties of vinyl ester-based nanocomposites. J Compos Mater 49(19):2365–2373

    Article  Google Scholar 

  11. Shukla DK, Kasisomayajula SV, Parameswaran V (2008) Epoxy composites using functionalized alumina platelets as reinforcements. Compos Sci Technol 68(14):3055–3063

    Article  CAS  Google Scholar 

  12. Rizvi R, Khan O, Naguib HE (2011) Development and characterization of solid and porous polylactide-multiwall carbon nanotube composites. Polym Eng Sci 51(1):43–53

    Article  CAS  Google Scholar 

  13. Sengupta R, Chakraborty S, Banbyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47(11):1956–1974

    Article  CAS  Google Scholar 

  14. Li X, Zhan ZJ, Peng GR, Wang WK (2011) Epoxy nanocomposites co-reinforced by two dimensionally different nanoscale particles. Polym Sci Ser B 53(12):595–600

    Article  CAS  Google Scholar 

  15. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78(18):268–278

    Article  CAS  Google Scholar 

  16. Kadambi SB, Pramoda K, Ramamurty U, Rao CNR (2015) Carbon-nanohorn-reinforced polymer matrix composites: synergetic benefits in mechanical properties. ACS Appl Mater Interfaces 7(31):17016–17022

    Article  CAS  Google Scholar 

  17. Jabeen S, Kausar A, Muhammad B, Gul S, Farooq M (2015) A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: structure, preparation and properties. Polym Plast Technol Eng 54(13):1379–1409

    Article  CAS  Google Scholar 

  18. Karimi A, Wan Daud WMA (2015) Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels: a review. Polym Compos 49(7):1763–1767

    Google Scholar 

  19. Quaresimin M, Varley RJ (2008) Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates. Compos Sci Technol 68(3–4):718–726

    Article  CAS  Google Scholar 

  20. Hussain F, Chen JH, Hojjati M (2007) Epoxy-silicate nanocomposites: cure monitoring and characterization. Mat Sci Eng A 445(6):467–476

    Article  Google Scholar 

  21. Basara C, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98(3):1081–1086

    Article  CAS  Google Scholar 

  22. Deana D, Walkerb R, Theodoreb M, Hamptonb E, Nyairoc E (2005) Chemorheology and properties of epoxy/layered silicate nanocomposites. Polymer 46(9):3014–3021

    Article  Google Scholar 

  23. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990

    Article  CAS  Google Scholar 

  24. Gao FG (2004) Clay/polymer composites: the story. Mater Today 7(11):50–55

    Article  CAS  Google Scholar 

  25. Wang JW, Qin SC (2007) Study on the thermal and mechanical properties of epoxy–nanoclay composites: the effect of ultrasonic stirring time. Mater Lett 61(19–20):4222–4224

    Article  CAS  Google Scholar 

  26. Puglia D, Fortunati E, D’Amico DA, Manfredi LB, Cyras VP, Kenny JM (2014) Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polym Degrad Stab 99(13):127–135

    Article  CAS  Google Scholar 

  27. Saravanan S, Ramamurthy PC, Madras G (2015) Effects of temperature and clay content on water absorption characteristics of modified MMT clay/cyclic olefin copolymer nanocomposite films: permeability, dynamic mechanical properties and the encapsulated organic device performance. Compos Part B 73(10):1–9

    Article  CAS  Google Scholar 

  28. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2):530–541

    Article  CAS  Google Scholar 

  29. Masoomeh G, Masoud J (2016) Hybridizing MWCNT with nano metal oxides and TiO2 in epoxy composites: influence on mechanical and thermal performances. J Appl Polym Sci 133(34):43834

    Google Scholar 

  30. Marouf BT, Mai YW, Bagheri R, Pearson RA (2016) Toughening of epoxy nanocomposites: nano and hybrid effects. Polym Rev 56(1):70–112

    Article  CAS  Google Scholar 

  31. Wu Z, Wan M, Wang Z (2015) The gas phase SiO2/epoxy nanocomposites with enhanced mechanical and thermal properties. High Perform Polym 27(4):469–475

    Article  CAS  Google Scholar 

  32. Chen C, Morgan AB (2009) Mild processing and characterization of silica epoxy hybrid nanocomposite. Polymer 50(26):6265–6273

    Article  CAS  Google Scholar 

  33. Rathore DK, Prusty RK, Ray BC (2017) Mechanical, thermomechanical, and creep performance of CNT embedded epoxy at elevated temperatures: an emphasis on the role of carboxyl functionalization. J Appl Polym Sci 134(21):44851

    Article  Google Scholar 

  34. Chen Y, Zhang DH, Wu XF, Wang HS, Xue Y, Wu RW, Zhang Z, Chen YF (2016) Epoxy/α-alumina nanocomposite with decreased dielectric constant and dielectric loss. Polym Compos. doi:10.1002/pc.24210

    Google Scholar 

  35. Dzuhri S, Yuhana NY, Khairulazfar M (2015) Thermal stability and decomposition study of epoxy/clay nanocomposites. Sains Malaysiana 44(3):441–448

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Foundational Research Project of the School of Science, Naval University of Engineering (HGDLXY17ZK004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfei Wang.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, G., Hu, Y. et al. High-performance nanocomposites synergistically reinforced by two-dimensional montmorillonite and zero-dimensional nanoTiO2 . Polym. Bull. 75, 1457–1472 (2018). https://doi.org/10.1007/s00289-017-2104-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2104-1

Keywords

Navigation