Skip to main content
Log in

Studies on gum Dammar based composite ion exchanger and their characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Gum Dammar and zirconium (IV) Iodooxalate [Gd-cl-poly (AAm)-Zr (IV) Iodooxalate] composite ion exchanger was prepared by incorporating inorganic precipitates of zirconium (IV) iodooxalate into polymeric mixture under vacuum conditions. The polymeric mixture (hydrogel) was prepared using gum Dammar (Gd), acrylamide (AAm) as monomer, N,N′-methylene-bis-acrylamide as crosslinker and potassium persulphate as initiator. The reaction conditions for synthesis of hydrogel such as time (60 min), temperature (65 °C), pressure (550 mmHg), solvent (5 ml), concentration of monomer (9.72 × 10−3 mol L−1) and cross-linker (1.40 × 10−4 mol L−1), ratio of zirconium oxychloride (0.1 M), potassium iodate (0.1 M) and oxalic acid (0.1 M) in ratio 1:1:1 were optimized to obtain the maximum ion exchange capacity (1.78 meq g−1). The morphology and structure of ion-exchanger were studied using Fourier transform infrared spectroscopy, scanning electron microscopy and Energy dispersive spectroscopy, X-ray diffraction data, Thermo gravimetric analysis, differential thermal analysis and differential thermo gravimetric analysis. The maximum ion exchange capacity, obtained after the optimized reaction conditions was 1.78 meq g−1. Polymeric-inorganic hybrid material enables the integration of useful organic and inorganic characteristics within a molecular scale composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mittal H, Jindal R, Kaith BS (2013) In vacuo synthesis of xanthan gum-based hydrogels with different vinyl monomer mixtures and their swelling behaviour in response to external environmental conditions. Polym Renew Res 4:19

    CAS  Google Scholar 

  2. Clearfield A (1982) A review of inorganic ion exchange materials. Press Inc, Boca Raton, p 304

    Google Scholar 

  3. Singh P, Rawat JP, Rahman N (2002) Synthesis, characterization and ion exchange properties of a new ion exchange material Zirconium (IV) iodooxalate. Indian J Chem 41:1616–1618

    Google Scholar 

  4. Judeinstein J, Sanchez C (1996) Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem 6:511–525

    Article  CAS  Google Scholar 

  5. Khan A, Asiri AM, Rub MA, Azum N, Khan AAP, Khan I, Mondal PK (2012) Review on composite cation exchanger as interdisciplinary materials in analytical chemistry. Int J Electrochem Sci 7:3854–3902

    CAS  Google Scholar 

  6. Gao Y, Choudhury NR (2003) Organic-inorganic hybrid materials from Sonogels, Nicolas de la Rosa-Fox, Manuel Pinero, and Luis Esquivias, Spain. In: Nalwa HS (ed) Handbook of organic-inorganic hybrid materials and nanocomposites, vol 1. American Scientific, New York

    Google Scholar 

  7. Mark JE, Lee CY, Bianconi PA (1995) Hybrid organic-inorganic composites, American Chemical Society Symposium Series, vol 565. American Chemical Society, Washington

    Book  Google Scholar 

  8. Douglas JC, Douglas H, Pamela JH, Robert PH, Robert L, Robert CH, Zubieta J (1999) Synthesis and characterization of poly-O-toluidine Th(IV) phosphate and poly-O-anisidine Sn(IV)phosphate organic inorganic nano-composite cation-exchange materials. Coord Chem Rev 737:190

    Google Scholar 

  9. Khan AA, Alam MM (2003) Synthesis, characterization and analytical applications of a new and novel ‘organic–inorganic’ composite material as a cation exchanger and Cd (II) ion-selective membrane electrode: polyaniline Sn (IV) tungstoarsenate. React Funct Polym 55:277–290

    Article  CAS  Google Scholar 

  10. Khan AA, Alam MM (2005) Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic–inorganic hybrid cation-exchange material: polypyrrole thorium (IV) phosphate. React Funct Polym 63:119–133

    Article  CAS  Google Scholar 

  11. Mark JE, Wang S, Ahmad Z (1995) Inorganic-organic composites, including some examples involving polyamides and polyimides. Macormol Symp 98:731–751

    Article  CAS  Google Scholar 

  12. Naggar IMEL, Mowafy EA, Abdel-Galil EA, Shahat MFEl (2010) Synthesis, characterization and ion-exchange properties of a novel ‘organic–inorganic’ hybrid cation-exchanger: polyacrylamide Sn(IV) molybdophosphate. Glob J Phys Chem 1:91–106

    Google Scholar 

  13. Pandit B, Chudasama U (2001) Synthesis, characterization and application of an inorgano organic material: p-chlorophenol anchored onto zirconium tungstate. Bull Mater Sci 24:265

    Article  CAS  Google Scholar 

  14. Singh P, Rawat JP, Rahman N (2003) Synthesis and characterization of zirconium (IV) iodovanadate and its use as electron exchanger. Talanta 59:443–452

    Article  CAS  Google Scholar 

  15. Buchholz FL, Graham AT (1997) Modern superabsorbent polymer technology. Elsevier, Amsterdam

    Google Scholar 

  16. Ratner BD (1981) Biomedical applications of hydrogels: review and critical appraisal. In: Williams DF (ed) Biocompatibility of clinical implant materials, vol 2. CRC Press, Boca Raton, FL, p 146

    Google Scholar 

  17. Pourjavadi A, Kurdtabar M (2007) Collagen-based highly porous hydrogel without any porogen: synthesis and characteristics. Eur Polym J 43:877–889

    Article  CAS  Google Scholar 

  18. Raju KM, Raju MP, Mohan YM (2003) Synthesis of superabsorbent copolymers as water manageable materials. Polym Int 52:768–772

    Article  CAS  Google Scholar 

  19. Guo M, Liu M, Zhan F, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44:4206–4211

    Article  CAS  Google Scholar 

  20. Zhang J, Liu R, Li A, Wang A (2006) Preparation, swelling behaviors and slow-release properties of a poly (acrylic acid-co-acrylamide)/sodium humate superabsorbent composite. Ind Eng Chem Res 45:48–53

    Article  CAS  Google Scholar 

  21. Kang GD, Cheon SH, Song SC (2006) Controlled release of doxorubicin from thermosensitive poly (organo phosphazene) hydrogels. Int J Pharm 319:29–36

    Article  CAS  Google Scholar 

  22. Aoki T, Kawashima M, Katono H, Sanui K, Ogata N, Okano T, Sakurai Y (1994) Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(n,n-dimethylacrylamide). Macromolecules 27:947

    Article  CAS  Google Scholar 

  23. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  24. Lokhande HT, Varadarajan PV (1992) A new guar gum-based superabsorbent polymer synthesised using gamma radiation as a soil additive. Bioresour Technol 42:119–122

    Article  CAS  Google Scholar 

  25. Van Aarssen BGK, Cox HC, Hoogendoorn P, De Leeuw JW (1990) A cadinene biopolymer present in fossil and extant Dammar resins as a source for cadinanes and bicadinanes in crude oils from Southeast Asia’. Geochim Cosmochim Acta 54:3021–3031

    Article  Google Scholar 

  26. De la Rie ER (1988) Stable varnishes for old master paintings. PhD Thesis, University of Amsterdam

  27. Clearfield A (2000) Inorganic ion exchangers, past, present and future Solv. Extrn Ion Exch 18:655–678

    Article  CAS  Google Scholar 

  28. Mittal H, Kaith BS, Jindal R (2010) Synthesis, characterization and swelling behaviour of poly (acrylamide-comethacrylic acid) grafted gum ghatti based superabsorbent hydrogels. Adv Appl Sci Res 1:56–66

    CAS  Google Scholar 

  29. Topp NE, Pepper KW (1949) Properties of ion-exchange resins in relation to their structure. Part I. Titration curves. J Chem Soc 690:3299–3303

    Article  Google Scholar 

  30. Chakraborty R, Bhattacharaya K, Chattopadhyay P (2014) Nanostructured zirconium phosphate as ion exchanger: synthesis, size dependent property and analytical application in radiochemical separation. Appl Radiat Isot 85:34–38

    Article  CAS  Google Scholar 

  31. Mills JS, Werner AEA (1955) The chemistry of dammar resin. J Chem Soc 3132–3140. doi:10.1039/JR9550003132

  32. Russo MV, Avino P (2012) Characterization and identification of natural terpenic resins employed in “Madonna con Bambino e Angeli” by Antonello da Messina using gas chromatography-mass spectrometry. Chem Cent J 6:59

    Article  CAS  Google Scholar 

  33. Gupta AP, Varshney PK (1997) Investigation of some kinetic parameters for M2+-H+ exchanges Zirconium (IV) tungstophosphate—a cation exchanger. React Funct Polym 32:67–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Jindal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Jindal, R. & Maiti, M. Studies on gum Dammar based composite ion exchanger and their characterization. Polym. Bull. 75, 1365–1385 (2018). https://doi.org/10.1007/s00289-017-2097-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2097-9

Keywords

Navigation