Polymer Bulletin

, Volume 75, Issue 3, pp 1329–1348 | Cite as

Cellulose acetate butyrate bilayer coated microspheres for controlled release of ciprofloxacin

  • Keerti V. Phadke
  • Lata S. Manjeshwar
  • Tejraj M. Aminabhavi
  • M. P. Sathisha
Original Paper
  • 51 Downloads

Abstract

Novel non-toxic cellulose acetate butyrate (CAB) bilayer coated microspheres of gelatin (GE) prepared without using a cross-linker were used for investigating the controlled release of ciprofloxacin (CFX). The microspheres were characterized by Fourier transform infrared spectroscopy to understand CAB coating and its chemical inertness towards CFX. Differential scanning calorimetry was used to investigate the molecular level drug dispersion into the polymer matrix, while scanning electron microscopy was used to investigate the surface morphology of the formulated microspheres. Mean particle sizes ranged between 240 and 847 μm, while equilibrium water uptake performed in double distilled water ranged between 492 and 3152%. The drug loaded formulations exhibited high encapsulation efficiency up to 91%. The in vitro release studies performed in acidic and alkaline media indicated influence of GE and CFX content as well as amount of CAB coating on the release characteristics of CFX that was extended up to 20 h. Analysis of in vitro results using empirical equations suggested a non-Fickian release mechanism.

Keywords

Thermosensitive Gelatin Ciprofloxacin Controlled release Cellulose acetate butyrate Bilayer coating 

Supplementary material

289_2017_2092_MOESM1_ESM.xlsx (104 kb)
Supplementary material 1 (XLSX 105 kb)

References

  1. 1.
    Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K (2008) Synthesis and optimization of gelatin nanoparticles using the miniemulsion process. Biomacromol 9:2383–2389. doi: 10.1021/bm800377w CrossRefGoogle Scholar
  2. 2.
    Phadke KV, Manjeshwar LS, Aminabhavi TM (2014) Microspheres of gelatin and poly(ethylene glycol) coated with ethyl cellulose for controlled release of metronidazole. Ind Eng Chem Res 53:6575–6584. doi: 10.1021/ie404052q CrossRefGoogle Scholar
  3. 3.
    Bigi A, Boanini E, Panzavolta S, Roveri N (2000) Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate. Biomacromol 1:752–756. doi: 10.1021/bm0055854 CrossRefGoogle Scholar
  4. 4.
    Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R (2006) Biomimetic fluorapatite gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. Angew Chem Int Ed 45:1905–1910. doi: 10.1002/anie.200503610 CrossRefGoogle Scholar
  5. 5.
    Munk P, Aminabhavi TM (2002) Introduction to macromolecular science. Wiley, New YorkGoogle Scholar
  6. 6.
    Mukherjee I, Rosolen MA (2013) Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim 114:1161–1166. doi: 10.1007/s10973-013-3166-4 CrossRefGoogle Scholar
  7. 7.
    Viswanathan NB, Thomas PA, Pandit JK, Kulkarni MG, Mashelkar RA (1999) Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in oil emulsion technique. J Controlled Release 58:9–20. doi: 10.1016/S0168-3659(98)00140-0 CrossRefGoogle Scholar
  8. 8.
    Youan BBC, Benoit MA, Baras B, Gillard J (1999) Protein-loaded poly (E caprolactone) microparticles. I. Optimization of the preparation by (water-in-oil)-in water emulsion solvent evaporation. J Microencapsul 16:587–599. doi: 10.1080/026520499288780 CrossRefGoogle Scholar
  9. 9.
    Esposito E, Cortesi R, Nastruzzi C (1996) Gelatin microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. Biomaterials 17:2009–2020. doi: 10.1016/0142-9612(95)00325-8 CrossRefGoogle Scholar
  10. 10.
    Cha C, Oh J, Kim K, Qiu Y, Joh M, Shin SR, Wang X, Camci-Unal G, Wan K, Liao R, Khademhosseini A (2014) Microfluidics-assisted fabrication of gelatin-silica core–shell microgels for injectable tissue constructs. Biomacromol 15:283–290. doi: 10.1021/bm401533y CrossRefGoogle Scholar
  11. 11.
    Lin WH, Tsai WB (2013) In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications. Biofabrication 5:1–8. doi: 10.1088/1758-5082/5/3/035008 CrossRefGoogle Scholar
  12. 12.
    Montero P, Fernández-Díaz MD, Gómez-Guillén MC (2002) Characterization of gelatin gels induced by high pressure. Food Hydrocoll 16:197–205. doi: 10.1016/S0268-005X(01)00083-2 CrossRefGoogle Scholar
  13. 13.
    Samad A, Sultana Y, Khar RK, Chuttani K, Mishra AK (2009) Gelatin microspheres of rifampicin cross-linked with sucrose using thermal gelation method for the treatment of tuberculosis. J Microencapsul 26:83–89. doi: 10.1080/02652040802172638 CrossRefGoogle Scholar
  14. 14.
    Nagura M, Yokota H, Ikeura M, Gotoh Y, Ohkoshi Y (2002) Structures and physical properties of cross-linked gelatin fibers. Polym J 34:761–766. doi: 10.1295/polymj.34.761 CrossRefGoogle Scholar
  15. 15.
    Ofner CM, Zhang YE, Jobeck VC, Bowman BJ (2001) Crosslinking studies in gelatin capsules treated with formaldehyde and in capsules exposed to elevated temperature and humidity. J Pharm Sci 90:79–88. doi: 10.1002/1520-6017(200101)90:1<79:AID-JPS9>3.0.CO;2-L CrossRefGoogle Scholar
  16. 16.
    Phadke KV, Manjeshwar LS, Aminabhavi TM (2014) Biodegradable polymeric microspheres of gelatine and carboxymethyl guar gum for controlled release of theophylline. Polym Bull 71:1625–1643. doi: 10.1007/s00289-014-1145-y CrossRefGoogle Scholar
  17. 17.
    Chiou B, Avena-Bustillos RJ, Shey J, Yee E, Bechtel PJ, Imam SH, Glenn GM, Orts WJ (2006) Rheological and mechanical properties of cross-linked fish gelatins. Polymer 47:6379–6386. doi: 10.1016/j.polymer.2006.07.004 CrossRefGoogle Scholar
  18. 18.
    Liang HC, Chang WH, Liang HF, Lee MH, Sung HW (2004) Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J Appl Polym Sci 91:4017–4026. doi: 10.1002/app.13563 CrossRefGoogle Scholar
  19. 19.
    Boanini E, Bigi A (2011) Biomimetic gelatin–octacalcium phosphate core–shell microspheres. J Colloid Interface Sci 362:594–599. doi: 10.1016/j.jcis.2011.06.061 CrossRefGoogle Scholar
  20. 20.
    Vandelli MA, Rivasi P, Guerra F, Forni F, Arletti R (2001) Gelatin microspheres crosslinked with d, l-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int J Pharm 215:175–184. doi: 10.1016/S0378-5173(00)00681-5 CrossRefGoogle Scholar
  21. 21.
    Cao N, Fu Y, He J (2007) Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocoll 21:575–584. doi: 10.1016/j.foodhyd.2006.07.001 CrossRefGoogle Scholar
  22. 22.
    Chambi H, Grosso C (2006) Edible films produced with gelatin and casein crosslinked with transglutaminase. Food Res Int 39:458–466. doi: 10.1016/j.foodres.2005.09.009 CrossRefGoogle Scholar
  23. 23.
    Ulubayram K, Aksu E, Gurhan SID, Serbetci K, Hasirci N (2002) Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci Polym Ed 13:1203–1219. doi: 10.1163/156856202320892966 CrossRefGoogle Scholar
  24. 24.
    Khan SA, Schneider M (2013) Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading. Macromol Biosci 13:455–463. doi: 10.1002/mabi.201200382 CrossRefGoogle Scholar
  25. 25.
    Naidu BVK, Paulson AT (2011) A New method for the preparation of gelatin nanoparticles: encapsulation and drug release characteristics. J Appl Polym Sci 121:3495–3500. doi: 10.1002/app.34171 CrossRefGoogle Scholar
  26. 26.
    Speit G, Neuss S, Schütz P, Keller MF, Schmid O (2008) The genotoxic potential of glutaraldehyde in mammalian cells in vitro in comparison with formaldehyde. Mutat Res 649:146–154. doi: 10.1016/j.mrgentox.2007.08.010 CrossRefGoogle Scholar
  27. 27.
    Vergnes JS, Ballantyne B (2002) Genetic toxicology studies with glutaraldehyde. J Appl Toxicol 22:45–60. doi: 10.1002/jat.825 CrossRefGoogle Scholar
  28. 28.
    Jelvehgari M, Atapour F, Nokhodchi A (2009) Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method. Arch Pharmacol Res 32:1019–1028. doi: 10.1007/s12272-009-1707-y CrossRefGoogle Scholar
  29. 29.
    Fundueanu G, Consantin M, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E (2007) Cellulose acetate butyrate–pH/thermosensitive polymer microcapsules containing aminated poly(vinyl alcohol) microspheres for oral administration of DNA. Eur J Pharm Biopharm 66:11–20. doi: 10.1016/j.ejpb.2006.09.002 CrossRefGoogle Scholar
  30. 30.
    Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Novel interpenetrating polymer network hydrogel microspheres of chitosan and poly(acrylamide)-grafted-guar gum for controlled release of ciprofloxacin. Ind Eng Chem Res 50:13280–13287. doi: 10.1021/ie2012856 CrossRefGoogle Scholar
  31. 31.
    Eng RH, Padberg FT, Smith SM, Tan EN, Cherubin CE (1991) Bactericidal effect of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 35(9):1824–1828CrossRefGoogle Scholar
  32. 32.
    Jean L, Fourcroy BB, Yu-Kun C, Marilou C, Lynne R, Neal S (2005) Efficacy and safety of a novel once-daily extended-release ciprofloxacin tablet formulation for treatment of uncomplicated urinary tract infection in women. Antimicrob Agents Chemother 49(10):4137–4143. doi: 10.1128/AAC.49.10.4137-4143.2005 CrossRefGoogle Scholar
  33. 33.
    Jelvehgari M, Maghsoodi M, Nemati H (2010) Development of theophylline floating microballoons using cellulose acetate butyrate and/or Eudragit RL 100 polymers with different permeability characteristics. Res Pharm Sci 5:29–39Google Scholar
  34. 34.
    Aminabhavi TM, Khinnavar RS (1993) Molecular transport of methyl and methoxy substituted benzenes into bromobutyl rubber, chlorosulfonated polyethylene and epichlorohydrin membranes. Polymer 34:4280–4286. doi: 10.1016/0032-3861(93)90189-H CrossRefGoogle Scholar
  35. 35.
    Wisniak J, Polishuk A (1999) Analysis of residuals—a useful tool for phase equilibrium data analysis. Fluid Phase Equilib 164:61–82. doi: 10.1016/S0378-3812(99)00246-0 CrossRefGoogle Scholar
  36. 36.
    Gerdi K, Sandro K (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protocols 5(2):267–281. doi: 10.1038/nprot.2009.182 CrossRefGoogle Scholar
  37. 37.
    Prathab B, Subramanian V, Aminabhavi TM (2007) molecular dynamics simulations to investigate polymer-polymer and polymer-metal oxide interactions. Polymer 48:409–416. doi: 10.1016/j.polymer.2006.11.014 CrossRefGoogle Scholar
  38. 38.
    Lindblad MS, Keyes BM, Gedvilas LM, Rials TG, Kelley SS (2008) FTIR imaging coupled with multivariate analysis for study of initial diffusion of different solvents in cellulose acetate butyrate films. Cellulose 15:23–33. doi: 10.1007/s10570-007-9173-5 CrossRefGoogle Scholar
  39. 39.
    Wang Q, Dong Z, Du Y (2007) Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films. Carbohydr Polym 69:336–343. doi: 10.1016/j.carbpol.2006.10.014 CrossRefGoogle Scholar
  40. 40.
    Joly-Duhamel C, Hellio D, Djabourov M (2002) All gelatin networks: 1. Biodiversity and physical chemistry. Langmuir 18:7208–7217. doi: 10.1021/la020189n CrossRefGoogle Scholar
  41. 41.
    Babu VR, Krishna Rao KSV, Sairam M, Naidu BVK, Aminabhavi TM (2006) pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J Appl Polym Sci 99:2671–2678. doi: 10.1002/app.22760 CrossRefGoogle Scholar
  42. 42.
    Siegel RA, Rathbone MJ (2012) Overview of controlled release mechanisms. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery, advances in delivery science and technology. Controlled Release Society, Springer International Publishing AG. Part of Springer Nature Springer US, New York, pp 19–43Google Scholar
  43. 43.
    Harder S, Fuhr U, Beermann D, Staib AH (1990) Ciprofloxacin absorption in different regions of the human gastrointestinal tract. Investigations with the hf-capsule. Br J Clin Pharmacol 30:35–39 (PMCID: PMC1368272 ) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Keerti V. Phadke
    • 1
  • Lata S. Manjeshwar
    • 1
  • Tejraj M. Aminabhavi
    • 2
  • M. P. Sathisha
    • 3
  1. 1.Department of ChemistryKarnatak UniversityDharwadIndia
  2. 2.SET’s College of PharmacyDharwadIndia
  3. 3.PG Department of ChemistryKLE’s P.C. Jabin Science CollegeHubliIndia

Personalised recommendations