Polymer Bulletin

, Volume 75, Issue 3, pp 1237–1251 | Cite as

Synthesis of N-vinylformamide and 1-vinyl-(1-methacryloyl)-3,5-dimethylpyrazole copolymers and their extraction ability in relation to histidine in water-salt media

  • Vyacheslav A. Kuznetsov
  • Maria S. Lavlinskaya
  • Irina V. Ostankova
  • Gennadiy V. Shatalov
  • Khidmet S. Shikhaliev
  • Elena A. Ryzhkova
Original Paper


Copolymers of N-vinylformamide (VF) with 1-vinyl-3,5-dimethylpyrazole (VDMP) and 1-methacryloyl-3,5-dimethylpyrazole (MDMP) are synthesized by free radical copolymerization in dioxane. The compositions of copolymers are determined by means of UV-spectroscopy and FTIR, and copolymerization constants r 1 and r 2 are calculated. N-vinylformamide demonstrates higher reactivity than pyrazole-containing monomers in both cases. Solubility of the synthesized copolymers in water was studied. VF–VDMP copolymers are water soluble at VF content higher than 0.65 molar fractions, and VF–MDMP copolymers—at VF content over 0.8 molar fractions. The formation of complexes between water-soluble copolymers and essential α-amino acid histidine in aqueous solutions is confirmed by UV-spectroscopy, FTIR, dynamic light scattering (DLS), and transition electron microscopy. It is found via DLS that the interactions between the amino acid with copolymer macromolecules lead to conformation changes in macromolecular coils. It is shown that VF–VDMP and VF–MDMP copolymers are effective extragents for histidine. Extraction is carried out at different pH values. The highest extraction degree (98%) is achieved in an acidic medium.


Radical copolymerization N-Vinylformamide 1-Vinyl-3,5-dimethylpyrazole 1-Methacryloyl-3,5-dimethylpyrazole Extraction 


Compliance with ethical standards


This research was funded by Ministry of Education and Science of the Russian Federation (Agreement Number 02.a03.21.0008).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ikeda M (2003) Amino acid production processes. In: Faurie R (ed) Microbial production of L-amino acids, Springer Berlin, pp 1–35. doi: 10.1007/3-540-45989-8_1
  2. 2.
    Kirsh YE (1998) Water soluble poly-N-vinylamides: synthesis and physicochemical properties. Wiley, ChichesterGoogle Scholar
  3. 3.
    Öztürk T, Yavuz M, Göktaş M et al (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513. doi: 10.1007/s00289-015-1558-2 CrossRefGoogle Scholar
  4. 4.
    Öztürka T, Göktaşa M, Hazerb B (2011) Synthesis and characterization of poly(methyl methacrylate-blockethylene glycol-block-methyl methacrylate) block copolymers by reversible addition–fragmentation chain transfer polymerization. J Macromol Sci Part A 48:265–272. doi: 10.1080/10601325.2011.528310 Google Scholar
  5. 5.
    Son DR, Raghu AV, Reddy KR et al (2016) Compatibility of thermally reduced graphene with polyesters. J Macromol Sci Part B Phys 55:1099–1110. doi: 10.1080/00222348.2016.1242529 CrossRefGoogle Scholar
  6. 6.
    Khan MU, Reddy KR, Snguanwongchai T et al (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294:1599–1610. doi: 10.1007/s00396-016-3922-7 CrossRefGoogle Scholar
  7. 7.
    Reddy KR, Karthik KV, Prasad SB et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. doi: 10.1016/j.poly.2016.08.029 CrossRefGoogle Scholar
  8. 8.
    Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16. doi: 10.1016/j.apcata.2014.10.001 CrossRefGoogle Scholar
  9. 9.
    Hassan M, Reddy KR, Haque E et al (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51. doi: 10.1016/j.jcis.2013.08.006 CrossRefGoogle Scholar
  10. 10.
    Reddy KR, Lee K-P, Gopalan AI (2007) Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres. J Nanosci Nanotechol 7:3117–3125. doi: 10.1166/jnn.2007.692 CrossRefGoogle Scholar
  11. 11.
    Zhang Y-P, Lee S-H, Reddy KR et al (2007) Synthesis and characterization of core–shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750. doi: 10.1002/app.25938 CrossRefGoogle Scholar
  12. 12.
    Reddy KR, Sin BC, Ryu KS et al (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603. doi: 10.1016/j.synthmet.2008.11.030 CrossRefGoogle Scholar
  13. 13.
    Choi SH, Kim DH, Raghu AV et al (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Phys 51:197–207. doi: 10.1080/00222348.2011.583193 CrossRefGoogle Scholar
  14. 14.
    Shatalov GV, Lavlinskaya MS, Pakhomova OA et al (2016) Copolymers of N-vinylcaprolactam with 1-vinyl- and 1-methacryloyl-3,5-dimethylpyrazole as sorbents of essential α-amino acids in liquid- and solid-phase extraction. Russ J Appl Chem 89:140–146. doi: 10.1134/S1070427216010225 CrossRefGoogle Scholar
  15. 15.
    Laukkanen A, Wiedmer S, Varjo S et al (2002) Stability and thermosensitive properties of various poly (N-vinylcaprolactam) microgels. Colloid Polym Sci 280:65–70. doi: 10.1007/s003960200009 CrossRefGoogle Scholar
  16. 16.
    Kuznetsov VA, Kushchev PO, Blagodatskikh IV et al (2016) Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties. Colloid Polym Sci 294:889–899. doi: 10.1007/s00396-016-3843-5 CrossRefGoogle Scholar
  17. 17.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477. doi: 10.1016/j.progpolymsci.2008.01.002 CrossRefGoogle Scholar
  18. 18.
    Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429. doi: 10.1002/anie.200900441 CrossRefGoogle Scholar
  19. 19.
    Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708. doi: 10.1002/anie.200501321 CrossRefGoogle Scholar
  20. 20.
    Wang Y, Nie J, Chang B, Sun Y, Yang W (2013) Poly(N-vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromol 14:3034–3046. doi: 10.1021/bm401131w CrossRefGoogle Scholar
  21. 21.
    Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064. doi: 10.1016/j.biomaterials.2004.09.008 CrossRefGoogle Scholar
  22. 22.
    Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856. doi: 10.1039/c2py00485b CrossRefGoogle Scholar
  23. 23.
    Cortez-Lemus NA, Licea-Claverie A (2015) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51. doi: 10.1016/j.progpolymsci.2015.08.001 CrossRefGoogle Scholar
  24. 24.
    Gu L, Zhu S, Hrymak A (2002) Synthesis and flocculation performance of graft copolymer of N -vinylformamide and poly(dimethylaminoethyl methacrylate) methyl chloride macromonomer. Colloid Polym Sci 280:167–175. doi: 10.1007/s00396-001-0596-5 CrossRefGoogle Scholar
  25. 25.
    Shevchenko NN, Shabsels BM, Men’shikova AY et al (2012) Luminophore-containing polymer particles: synthesis and optical properties of thin films on their basis. Nanotechnol Russ 7:188–195. doi: 10.1134/S1995078012020152 CrossRefGoogle Scholar
  26. 26.
    Panarin EF, Ivanova NP (2005) Synthesis of copolymers of N-vinylformamide with N-methacryloylglucosamine. Russ J Appl Chem 78:1316–1319. doi: 10.1007/s11167-005-0506-6 CrossRefGoogle Scholar
  27. 27.
    Pavlov GM, Korneeva EV, Ivanova NP et al (2007) Synthesis and hydrodynamic and molecular characteristics of N-methacryloylglucosamine—N-vinylformamide copolymers. Russ J Appl Chem 80:777–782. doi: 10.1134/S1070427207050175 CrossRefGoogle Scholar
  28. 28.
    Bochek AM, Shevchuk IL, Gavrilova II et al (2010) Properties of aqueous solutions containing blends of poly-N-vinylformamide with carboxymethyl cellulose of various degrees of ionization and of composite films of these polymers. Russ J Appl Chem 83:1622–1627. doi: 10.1134/S1070427210090211 CrossRefGoogle Scholar
  29. 29.
    Bochek AM, Nishiyama S, Zabivalova N et al (2011) Characteristics of composite films based on methyl cellulose and poly(N-vinylformamide) prepared from solutions in water and dimethyl sulfoxide. Polym Sci Ser A 53:409–417. doi: 10.1134/S0965545X11050026 CrossRefGoogle Scholar
  30. 30.
    Bochek AM, Shevchuk IL, Gavrilova NA et al (2012) Compatibility of carboxymethyl cellulose ionized to various degrees with poly-N-vinylformamide in composite films. Russ J Appl Chem 8:1413–1421. doi: 10.1134/S1070427212090182 CrossRefGoogle Scholar
  31. 31.
    Spange S, Meyer T, Voight I et al. (2004) Poly(N-vinylformamide-co-vinylamine)/inorganic oxide hybrid materials. In: Schmidt M (ed) Polyelectrolytes with defined molecular architecture I, Springer, Berlin, pp 43–78. doi:  10.1007/b11267
  32. 32.
    Men’shikova AI, Evseeva TG, Inkin KS et al (2006) Bifunctional monodisperse microspheres of copolymers of methyl methacrylate and N-vinylformamide. Russ J Appl Chem 79:1660–1665. doi: 10.1134/S1070427206100211 CrossRefGoogle Scholar
  33. 33.
    Chen Q, Liu X, Yang Q et al (2008) Low cationic proportion ampholytic polymer: synthesis, solution properties and interaction with anionic surfactant. Polym Bull 60:545–554. doi: 10.1007/s00289-007-0885-3 CrossRefGoogle Scholar
  34. 34.
    Nesterova NA, Gavrilova II, Panarin EF (2009) Radical copolymerization of N-vinylformamide with unsaturated carboxylic acids. Russ J Appl Chem 82:618–621. doi: 10.1134/S1070427209040168 CrossRefGoogle Scholar
  35. 35.
    Shevchenko NN, Pankova GA, Evseeva TG et al (2014) Copolymerization of styrene with N-vinylformamide and ethylene glycol dimethacrylate and characteristics of the formed particles. Polym Sci Ser B 56:132–138. doi: 10.1134/S1560090414020146 CrossRefGoogle Scholar
  36. 36.
    Polyakova IV, Sverlova NA, Groshikova AR et al (2015) Low-basic anion exchangers based on glycidyl methacrylate for selective sorption of endotoxin. Russ J Appl Chem 88:259–266. doi: 10.1134/S1070427215020111 CrossRefGoogle Scholar
  37. 37.
    Baigil’din VA, Pankova GA, Evseeva TG et al (2015) Cross-linked poly(methyl methacrylate) particles with surface amino groups. Colloid J 77:6–10. doi: 10.1134/S1061933X15010020 CrossRefGoogle Scholar
  38. 38.
    Wang H, Li P, Xu K et al (2016) Synthesis and characterization of multi-sensitive microgel-based polyampholyte hydrogels with high mechanical strength. Colloid Polym Sci 294:367–380. doi: 10.1007/s00396-015-3792-4 CrossRefGoogle Scholar
  39. 39.
    Shevchenko NN, Men’shikova AY, Bazhenova AG et al (2008) Self-assembly of monodisperse nanoparticles of styrene copolymers with N-vinylformamide into periodic colloidal structures. High Energy Chem 42:532–534. doi: 10.1134/S0018143908070084 CrossRefGoogle Scholar
  40. 40.
    Seto Y, Kameyama K, Tanaka N et al (2003) High-pressure studies on the coacervation of copoly(N-vinylformamide–vinylacetate) and copoly(N-vinylacetylamide–vinylacetate). Colloid Polym Sci 281:690–694. doi: 10.1007/s00396-002-0828-3 CrossRefGoogle Scholar
  41. 41.
    Okatova OV, Gavrilova II, Ul’yanova NN et al (2012) Hydrodynamic, molecular, and conformational characteristics of macromolecules of a random copolymer of N-methyl-N-vinylacetamide and N-methyl-N-vinylamine hydrochloride. Russ J Appl Chem 85:1239–1246. doi: 10.1134/S1070427212080174 CrossRefGoogle Scholar
  42. 42.
    Panarin EF, Ivanova NP, Belokhvostova AT et al (2006) Immunomodulating properties of homo- and copolymers of N-vinylamides. Pharm Chem J 40:141–144. doi: 10.1007/s11094-006-0078-7 CrossRefGoogle Scholar
  43. 43.
    Hong J, Pelton R (2002) The surface tension of aqueous polyvinylamine and copolymers with N-vinylformamide. Colloid Polym Sci 280:203–205. doi: 10.1007/s00396-001-0613-8 CrossRefGoogle Scholar
  44. 44.
    Xu J, Timmons AB, Pelton R (2004) N-vinylformamide as a route to amine-containing latexes and microgels. Colloid Polym Sci 282:256–263. doi: 10.1007/s00396-003-0901-6 CrossRefGoogle Scholar
  45. 45.
    Kruglova VA, Annenkov VV, Vereshchagin LI et al (1987) Synthesis of vinylazole copolymers and their physiological activity. Pharm Chem J 21:87–91. doi: 10.1007/BF00765102 CrossRefGoogle Scholar
  46. 46.
    Shatalov GV, Churilina EV, Kuznetsov VA et al (2007) Copolymerization of N-vinylcaprolactam with N-vinyl(benz)imidazoles and the properties of aqueous solutions of the copolymers. Polym Sci Ser B 49:57–60. doi: 10.1134/S1560090407030013 CrossRefGoogle Scholar
  47. 47.
    Bellamy LJ (1958) The infra-red spectra of complex molecules. Methuen & Co., Ltd/Wiley, London/New YorkGoogle Scholar
  48. 48.
    Fineman M, Ross S (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5:259–262. doi: 10.1002/pol.1950.120050210 CrossRefGoogle Scholar
  49. 49.
    Dugas H, Penney C (1981) Bioorganic chemistry of the amino acids. In: Dugas H, Penney C (eds) Bioorganic chemistry: a chemical approach to enzyme action. Springer, New York, pp 13–92. doi: 10.1007/978-1-4684-0095-3_2
  50. 50.
    Shkinev VM, Mokshina NY, Khokhlov VY et al (2013) Extraction of biologically active compounds in two-phase aqueous systems based on poly-N-vinylpyrrolidone. Dokl Chem 448:49–51. doi: 10.1134/S0012500813020055 CrossRefGoogle Scholar
  51. 51.
    Mokshina NY, Bykovskii DV, Shatalov GV et al (2016) Separation of binary mixtures of histidine, proline, and methionine in extraction systems based on water soluble polymers of vinyl series. J Anal Chem 71:201–204. doi: 10.1134/S1061934816020106 CrossRefGoogle Scholar
  52. 52.
    Gupta RR, Kumar M, Gupta V (1999) Five-membered heterocycles with two heteroatoms. In: Gupta RR, Kumar M Gupta, V (eds) Heterocyclic chemistry. Volume II: Five-membered heterocycles with two heteroatoms, Springer, Berlin, pp 357–486. doi: 10.1007/978-3-662-07757-3_4

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vyacheslav A. Kuznetsov
    • 1
  • Maria S. Lavlinskaya
    • 1
  • Irina V. Ostankova
    • 1
  • Gennadiy V. Shatalov
    • 1
  • Khidmet S. Shikhaliev
    • 1
  • Elena A. Ryzhkova
    • 2
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.People’s Friendship University of RussiaMoscowRussia

Personalised recommendations