Polymer Bulletin

, Volume 75, Issue 3, pp 1253–1263 | Cite as

Use of samarium(III)–amino acid complexes as initiators of ring-opening polymerization of cyclic esters

  • Dimas A. Medina
  • Jesús M. Contreras
  • Francisco J. López-Carrasquero
  • Eduardo J. Cardozo
  • Ricardo R. Contreras
Original Paper
  • 56 Downloads

Abstract

Poly(ε-caprolactone) (PCL) and poly(l-lactide) (PLA) were prepared by ring-opening polymerization (ROP) using samarium(III) acetate (SmAc3) and amino acid complexes of samarium(III) as initiators. The catalytic behavior of samarium(III) acetate and their respective amino acid complexes, Sm(2,2′-bipyridine)(Ln)3 (L1 = l-aspartic acid; L2 = l-glutamic acid and L3 = glycine), was studied. It could be observed that the amino acid structure and chemical bond type have great influence on the catalytic activity. Polymerization reaction temperature was 125 °C and the effect of time reaction on the conversion of monomers to polymers and the molecular weight were studied. The results indicate that the initiators induce the polymerization of ε-caprolactone (ε-CL) and l-lactide (l-LA). Polymers were characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (1H-NMR) and size exclusion chromatography (SEC). Polyesters with average-number molar mass of 1.50 × 103 − 104 Da were obtained. Based on the 1H-NMR end group analysis of low molecular weight of polymers, a coordination–insertion mechanism is proposed for the polymerization of lactones. Kinetics study indicated a polymerization rate of first order with respect to monomer concentration. Differences in the rates of polymerization in the four initiators appeared to be governed by the different degrees of steric hindrance in the initiator structure and monomer.

Keywords

Samarium(III) acetate Amino acid–samarium(III) complex Ring-opening polymerization ε-Caprolactone Poly(ε-caprolactone) l-Lactide Poly(l-lactide) 

Notes

Acknowledgements

The authors thank the Consejo de Desarrollo Científico, Humanístico, Tecnológico y de las Artes of the Universidad de Los Andes (CDCHTA-ULA) for financial support (Grants C-1752 and C-1744). The authors also wish to thank Lic. Freddy Rojas and Dr. María Luisa Arnal of Simón Bolívar University, for their help with the SEC experiments.

References

  1. 1.
    Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846. doi: 10.1002/1521-4095(200012)12:23<1841:AID-ADMA1841>3.0.CO;2-E CrossRefGoogle Scholar
  2. 2.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176. doi: 10.1021/cr040002s CrossRefGoogle Scholar
  3. 3.
    Kricheldorf HR, Kreiser-Saunders I, Jürgens Ch, Wolter D (1996) Polylactides—synthesis, characterization and medical application. Macromol Symp 103:85–102. doi: 10.1002/masy.19961030110 Google Scholar
  4. 4.
    Dubois Ph, Jérôme R, Teyssié Ph (1991) Macromolecular engineering of polylactones. 3. Synthesis, characterization, and applications of poly(ε-caprolactone) macromonomers. Macromolecules 24(5):977–981. doi: 10.1021/ma00005a002 CrossRefGoogle Scholar
  5. 5.
    Agarwal S, Puchner M (2002) Ring opening polymerizations of cyclic esters and carbonate by rare-earth Ln Cp3. Eur Polym J 38(12):2365–2371. doi: 10.1016/S0014-3057(02)00141-6 CrossRefGoogle Scholar
  6. 6.
    Save M, Schappacher M, Soum A (2002) Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide. Macromol Chem Phys 203(5–6):889–899. doi: 10.1002/1521-3935(20020401)203:5/6<889:AID-MACP889>3.0.CO;2-O CrossRefGoogle Scholar
  7. 7.
    Nakayama Y, Sasaki K, Watanabe N, Cai Z, Shiono T (2009) Ring-opening polymerization of six-membered cyclic esters catalyzed by tetrahydroborate complexes of rare earth metals. Polymer 50:4788–4793. doi: 10.1016/j.polymer.2009.08.024 CrossRefGoogle Scholar
  8. 8.
    Coulembier O, Dubois Ph (2009) Polyesters from β-Lactones. In: Dubois P, Coulembier O, Raquez J (eds) Handbook of ring-opening polymerization. Wiley-VCH, Weinhein, pp 227–254CrossRefGoogle Scholar
  9. 9.
    Jérôme C, Lecomte P (2008) Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev 60(9):1056–1076. doi: 10.1016/j.addr.2008.02.008 CrossRefGoogle Scholar
  10. 10.
    Amgoume A, Thomas C, Carpentier JP (2007) Yttrium complexes as catalysts for living and immortal polymerization of lactide to highly heterotactic PLA. Macromol Rapid Commun 28(6):693–697. doi: 10.1002/marc.200600862 CrossRefGoogle Scholar
  11. 11.
    Guillaume S, Schappacher M, Soum A (2003) Polymerization of ε-caprolactone Initiated by Nd(BH4)3(THF)3: synthesis of hydroxytelechelic poly(ε-caprolactone). Macromolecules 36:54–60. doi: 10.1021/ma020993g CrossRefGoogle Scholar
  12. 12.
    Palard I, Soum A, Guillaume S (2004) Unprecedented polymerization of ε-caprolactone initiated by a single-site lanthanide borohydride complex, [Sm(η-C5Me5)2(BH4)(thf)]: mechanistic insights. Chem Eur J 10:4054–4062. doi: 10.1002/chem.200400319 CrossRefGoogle Scholar
  13. 13.
    Palard I, Soum A, Guillaume S (2005) Rare earth metal tris(borohydride) complexes as initiators for ε-caprolactone polymerization: general features and IR investigations of the process. Macromolecules 38:6888–6894. doi: 10.1021/ma0506280 CrossRefGoogle Scholar
  14. 14.
    Dyer H, Huijser S, Susperregui N, Bonnet F, Schwarz A, Duchateau R, Maron L, Mountford P (2010) Ring-opening polymerization of rac-lactide by bis(phenolate)amine-supported samarium borohydride complexes: an experimental and DFT study. Organometallics 29:3602–3621. doi: 10.1021/om100513j CrossRefGoogle Scholar
  15. 15.
    Palard I, Schappacher M, Soum A, Guillaume S (2006) Ring-opening polymerization of ε-caprolactone initiated by rare earth alkoxides and borohydrides: a comparative study. Polym Int 55:1132–1137. doi: 10.1002/pi.1984 CrossRefGoogle Scholar
  16. 16.
    Dutta S, Hung W, Huang B, Lin Ch (2012) Recent developments in metal-catalyzed Ring-opening polymerization of lactides and glycolides: preparation of polylactides, polyglycolide and poly(lactide-co-glycolide). Adv Polym Sci 245:219–283. doi: 10.1007/12_2011_156 CrossRefGoogle Scholar
  17. 17.
    Cardozo E, Contreras RR, Bellandi F, Lopez-Rivera A, Avendaño J, Araque C, Vielma J (2015) Synthesis and characterization of six novel samarium (III) complexes with l-aspartic Acid, l-glutamic Acid, glycine and O-phenanthroline, bipiridile as ligands. Rev Politéc 36:96Google Scholar
  18. 18.
    Lippard S, Berg J (1994) Principles of bioinorganic chemistry. University Science Books, Mill ValleyGoogle Scholar
  19. 19.
    Contreras JM, Medina D, López-Carrasquero F, Contreras RR (2013) Ring-opening polymerization of ε-caprolactone initiated by samarium acetate. J Polym Res 20:244. doi: 10.1007/s10965-013-0244-z CrossRefGoogle Scholar
  20. 20.
    Yu C, Zhang L, Shen Z (2003) Ring-opening polymerization of ε-caprolactone using rare earth tris(4-tert-butylphenolate)s as a single component initiator. Eur Polym J 39:2035–2039. doi: 10.1016/S0014-3057(03)00112-5 CrossRefGoogle Scholar
  21. 21.
    Chen G, Fan X, Pan W, Liu Y (2010) Ring opening polymerization of ε-caprolactone initiated by heteropolyacid. J Polym Res 17:847–851. doi: 10.1007/s10965-009-9376-6 CrossRefGoogle Scholar
  22. 22.
    Fang L, Zhang L, Shen Z (2004) Characteristics and kinetics of ring-opening polymerization of ε-caprolactone initiated by lanthanide tris(2,4,6-trimethylphenolate)s. Polym J 36:91–95. doi: 10.1295/polymj.36.91 CrossRefGoogle Scholar
  23. 23.
    Agarwal S (2004) In situ formation of Sm(III) initiator from SmI2/MMA for ring opening polymerization of cyclic esters. Eur Polym J 40:2143–2152. doi: 10.1016/j.eurpolymj.2004.05.006 CrossRefGoogle Scholar
  24. 24.
    Shen Y, Shen Z, Shen J, Zhang Y, Yao K (1996) Characteristic and mechanism of ε-caprolactone polymerization with rare earth halide systems. Macromolecules 29:3441–3446. doi: 10.1021/ma9518363 CrossRefGoogle Scholar
  25. 25.
    Möller M, Kånge R, Hedrick J (2000) Sn(OTf)2 and Sc(OTf)3: efficient and versatile catalyst for the controlled polymerization of lactones. J Polym Sci Part A Polym Chem 38:2067–2074CrossRefGoogle Scholar
  26. 26.
    Wang Y, Zhang L, Gao X, Zhang R, Li J (2013) Characteristic and mechanism of l-lactide polymerization using N-heterocyclic carbine organocatalst. J Pol Res 20:87. doi: 10.1007/s10965-013-0087-7 CrossRefGoogle Scholar
  27. 27.
    Gowda R, Chakraborty D (2009) Enviromentally benign process for the bulk ring opening polymerization of lactones using iron and ruthenium chloride catalysts. J Mol Cat A Chem 301:84–92. doi: 10.1016/j.molcata.2008.11.010 CrossRefGoogle Scholar
  28. 28.
    Zhang L, Wang Y, Wang P, Shen L (2010) Ring-opening polymerization of 2,2-dimethyltrimethylene carbonate using rare earth aryl oxides substituted by alkl groups. Sci China Chem 53:599–604. doi: 10.1007/s11426-010-0077-0 CrossRefGoogle Scholar
  29. 29.
    Wang Y, Niu Y, Zhang L, Wang P, Shen L (2011) A series of rare earth phenolates substituted by alkyl groups for D,l-lactide ring-opening polymerization. J Wuhan Univ Technol Mater Sci Ed 26:939–944. doi: 10.1007/s1595-011-0341-y CrossRefGoogle Scholar
  30. 30.
    Zhu W, Ling J, Zhiquan J (2004) Homopolymerization of ε-caprolactone initiated by scandiun aryloxide. Polym Bull 52:185–189. doi: 10.1007/s00289-004-0271-3 CrossRefGoogle Scholar
  31. 31.
    Peng F, Ling J, Shen Z, Zhu W (2005) Correlation between phenol structure and catalytic activity of samarium(III) phenolates in polymerization of ε-caprolactone: Part 2. Tertbutyl's electronic and steric effects. J Mol Catal A Chem 230:135–141. doi: 10.1016/j.molcata.2004.12.020 CrossRefGoogle Scholar
  32. 32.
    Yuang M, Li X, Xiong Ch, Deng X (1999) Polymerization of lactides and lactones 5. Ring-opening polymerization of ε-caprolactone and DL-lactide by rare earth 2-methylphenyl samarium. Eur Polym J 35:2131–2138. doi: 10.1016/S0014-3057(99)0025-7 CrossRefGoogle Scholar
  33. 33.
    Sheng H, Li J, Zhang Y, Yao Y, Shen Q (2008) Synthesis and molecular structure of new heterometal alkoxide clusters Ln2Na8(OCH2CF3)14(THF)6 (Ln= Sm, Y, Yb): highly active catalysts for polymerization of ε-caprolactone and trimethylene carbonate. Polyhedron 27:1665–1672. doi: 10.1016/j.poly.2008.01.031 CrossRefGoogle Scholar
  34. 34.
    Monsalve M, Contreras J, Cardozo E, Contreras R (2015) Evaluación de la actividad de complejos de samario(III) con ácido L-aspártico, ácido L-glutámico, glicina y o-fenantrolina, como iniciadores en la polimerización de carbonatos cíclicos. Avances en Química 10:129–137Google Scholar
  35. 35.
    Chen W, Ling J, Shen Z (2005) Preparation and polymerization mechanism of dihydroxy-capped PCL, poly(CL-b-PEG-b-CL) and poly(DTC-b-CL-b-DTC). Sci China Ser B 48:334–382. doi: 10.1360/042004-43 CrossRefGoogle Scholar
  36. 36.
    Wang Y, Zhang L, Wang P, Shen L (2010) Ring-opening polymerization of L-lactide with rare earth aryloxides substituted by various alkyl groups. Chin J Polym Sci 28:509–515. doi: 10.1007/s10118-010-9065-2 CrossRefGoogle Scholar
  37. 37.
    Vivas M, Mejías N, Contreras J (2003) Ring-opening polymerization of lactones initiated by diphenylzinc-coinitiator systems. Polym Int 52:1005–1009. doi: 10.1002/pi.1183 CrossRefGoogle Scholar
  38. 38.
    Vivas M, Contreras J (2003) Ring-opening polymerization of ε-caprolactone initiated by diphenylzinc. Eur Polym J 39:43–47. doi: 10.1016/S0014-3057(02)00190-8 CrossRefGoogle Scholar
  39. 39.
    Contreras J, Dávila D (2006) Ring-opening copolymerization of l-lactide with ε-caprolactone initiated by diphenylzinc. Polym Int 55:1049–1056. doi: 10.1002/pi.2050 CrossRefGoogle Scholar
  40. 40.
    Tsutsumi C, Yasuda H (2001) Biodegradation of copolymers composed of optically active l-lactide and (R)- or (S)-l-methyltrimethylene carbonate. J Polym Sci Part A Polym Chem 39:3916–3927. doi: 10.1002/pola.10035 CrossRefGoogle Scholar
  41. 41.
    Dubois P, Jacobs C, Jerome R, Teyssie P (1991) Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24(9):2266–2270. doi: 10.1021/ma00009a022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dimas A. Medina
    • 1
  • Jesús M. Contreras
    • 1
  • Francisco J. López-Carrasquero
    • 1
  • Eduardo J. Cardozo
    • 2
  • Ricardo R. Contreras
    • 2
  1. 1.Grupo de Polímeros, Departamento de Química, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela
  2. 2.Laboratorio de Organometálicos, Departamento de Química, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations