Polymer Bulletin

, Volume 75, Issue 3, pp 1311–1327 | Cite as

Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana

  • Piyachat Chuysinuan
  • Supanna Techasakul
  • Sunit Suksamrarn
  • Nuanchawee Wetprasit
  • Poonpilas Hongmanee
  • Pitt Supaphol
Original Paper
  • 122 Downloads

Abstract

Garcinia mangostana-loaded electrospun polyacrylonitrile (PAN) fiber mats with antibacterial and anti-tuberculosis properties were fabricated from PAN solution containing G. mangostana extract in dimethylformamide. 10% PAN solution was mixed with G. mangostana in amounts of 10, 15, 20, and 30 wt% based on the weight of PAN powder used in the experiment. The PAN solutions were processed using the electrospinning process. Both untreated (neat) and G. mangostana-loaded PAN fibers were smooth in appearance, and the average diameter of samples was ~215 and ~245 nm, respectively. Morphologies, release characteristics, antimicrobial efficiencies against Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pyogenes, and anti-tuberculosis properties of the neat electrospun and 10–30% G. mangostana-loaded e-spun fiber mats were investigated. In vitro release studies of G. mangostana from e-spun PAN fiber mats were determined using the total immersion method in acetate buffer and phosphate buffer solutions containing Tween 80 and methanol. The cumulative released amount of G. mangostana from the samples proportionally increased with the increase of G. mangostana incorporated in the spinning solutions. This study demonstrated a convenient procedure with the potential to develop the antimicrobial and anti-tuberculosis properties of electrospun fibrous membranes containing G. mangostana, which are beneficial in filtration applications for respirators, face masks, and air-conditioning filters.

Keywords

Electrospinning Polyacrylonitrile Garcinia mangostana 

Notes

Acknowledgements

The authors acknowledge financial support received from the Research Pyramid, Rachadaphiseksomphot Endowment Fund (GCURP_58_02_63_01) of Chulalongkorn University. This work was supported in part by (1) the Petroleum and Petrochemical College, Chulalongkorn University, (2) the Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials (CE-PPAM), (3) the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, (4) Department for Development of Thai Traditional and Alternative Medicine Ministry of Health, Ministry of Public Health of Thailand, and (5) the Faculty of Biotechnology, Ramkhamhaeng University.

References

  1. 1.
    McEvoy CRE, Falmer A, Gey van Pittius NC, Victor TC, Helden PD, Warren RM (2007) The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis 87:393–404. doi: 10.1016/j.tube.2007.05.010 CrossRefGoogle Scholar
  2. 2.
    Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899. doi: 10.1016/S0140-6736(03)14333-4 CrossRefGoogle Scholar
  3. 3.
    Pedraza-Chaverri J, Cardenas-Rodrguez N, Orozco-Ibarra M, Perez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46:3227–3239. doi: 10.1016/j.fct.2008.07.024 CrossRefGoogle Scholar
  4. 4.
    Yoshimura M, Ninomiya K, Tagashira Y, Maejima K, Yoshida T, Amakura Y (2015) Polyphenolic constituents of the pericarp of mangosteen (Garcinia mangostana L.). J Agric Food Chem 63:7670–7674. doi: 10.1021/acs.jafc.5b01771 CrossRefGoogle Scholar
  5. 5.
    Arunrattiyakorn P, Suksamrarn S, Suwannasai N, Kanzaki H (2011) Microbial metabolism of alpha-mangostin isolated from Garcinia mangostana L. Phytochemistry 72:730–734. doi: 10.1016/j.phytochem.2011.02.007 CrossRefGoogle Scholar
  6. 6.
    Tjahjani S, Widowati W, Khiong K, Suhendra A, Tjokropranoto R (2014) Antioxidant properties of Garcinia mangostana L (mangosteen) rind. Procedia Chem 13:198–203. doi: 10.1016/j.proche.2014.12.027 CrossRefGoogle Scholar
  7. 7.
    Ibrahim MY, Hashim NM, Mariod AA, Mohan S, Abdulla MA, Abdelwahab SI, Arbab IA (2016) α-Mangostin from Garcinia mangostana Linn: an updated review of its pharmacological properties. Arab J Chem 9:317–329. doi: 10.1016/j.arabjc.2014.02.011 CrossRefGoogle Scholar
  8. 8.
    Naczk M, Towsend M, Zadernowski R, Shahidi F (2011) Protein-binding and antioxidant potential of phenolics of mangosteen fruit (Garcinia mangostana). Food Chem 128:292–298. doi: 10.1016/j.foodchem.2011.03.017 CrossRefGoogle Scholar
  9. 9.
    Zadernowski R, Czaplicki S, Naczk M (2009) Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food Chem 112:685–689. doi: 10.1016/j.foodchem.2008.06.030 CrossRefGoogle Scholar
  10. 10.
    Chaivisuthangkura A, Malaikaew Y, Chaovanalikit A, Jaratrungtawee A, Panseeta P, Ratananukul P, Suksamrarn S (2009) Prenylated xanthone composition of Garcinia mangostana (Mangosteen) fruit hull. Chromatographia 69:315–318. doi: 10.1365/s10337-008-0890-10009-5893/09/02 CrossRefGoogle Scholar
  11. 11.
    Chin YW, Jung HA, Chai H, Keller WJ, Kinghorn AD (2008) Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 69:754–758. doi: 10.1016/j.phytochem.2007.09.023 CrossRefGoogle Scholar
  12. 12.
    Xie Z, Sintara M, Chang T, Ou B (2015) Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults. Food Sci Nutr 3:32–38. doi: 10.1002/fsn3.187 CrossRefGoogle Scholar
  13. 13.
    Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2003) Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 66:1124–1127. doi: 10.1021/np020546u CrossRefGoogle Scholar
  14. 14.
    Matsumoto K, Akao Y, Yi H, Ohguchi K, Ito T, Tanaka T, Kobayashi E, Iinuma M, Nozawa Y (2004) Preferential target is mitochondria in alpha-mangostin-induced apoptosis in human leukemia HL60 cells. Bioorg Med Chem 12:5799–5806. doi: 10.1016/j.bmc.2004.08.034 CrossRefGoogle Scholar
  15. 15.
    Matsumoto K, Akao Y, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2005) Xanthones induce cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells. Bioorg Med Chem 13:6064–6069. doi: 10.1016/j.bmc.2005.06.065 CrossRefGoogle Scholar
  16. 16.
    Watanapokasin R, Jarinthanan F, Nakamura Y, Sawasjirakij N, Jaratrungtawee A, Suksamrarn S (2011) Effects of α-mangostin on apoptosis induction of human colon cancer. World J Gastroenterol 17:2086–2095. doi: 10.3748/wjg.v17.i16.2086 CrossRefGoogle Scholar
  17. 17.
    Jung H-A, Su B-N, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (mangosteen). J. Agric. Food Chem 54:2077–2082. doi: 10.1021/jf052649z CrossRefGoogle Scholar
  18. 18.
    Moongkarndi P, Srisawat C, Saetun P, Jantaravinid J, Peerapittayamongkol C, Soi-ampornkul R, Junnu S, Sinchaikul S, Chen S-T, Charoensilp P, Thongboonkerd V, Neungton N (2010) Protective effect of mangosteen extract against beta-amyloid-induced cytotoxicity, oxidative stress and altered proteome in SK-N-SH Cells. J Proteome Res 9:2076–2086. doi: 10.1021/pr100049v CrossRefGoogle Scholar
  19. 19.
    Chomnawang MT, Surassmo S, Nukoolkarn VS, Gritsanapan W (2005) Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J Ethnopharmacol 101:330–333. doi: 10.1016/j.jep.2005.04.038 CrossRefGoogle Scholar
  20. 20.
    Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N, Suksamrarn A (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 51:857–859. doi: 10.1248/cpb.51.857 CrossRefGoogle Scholar
  21. 21.
    Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Memb Sci 296:1–8. doi: 10.1016/j.memsci.2007.03.038 CrossRefGoogle Scholar
  22. 22.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703. doi: 10.1002/anie.200604646 CrossRefGoogle Scholar
  23. 23.
    Ahmadi Majd S, Khorasgani MR, Moshtaghian SJ, Talebi A, Khezri M (2016) Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromolec 92:1162–1168. doi: 10.1016/j.ijbiomac.2016.06.035 CrossRefGoogle Scholar
  24. 24.
    Huang T, Pang F, Hsieh I, Cakmak M (2016) Control of radial structural gradient in PAN/silver nanofibers using solvent vapor treatment. Synth Met 221:309–318. doi: 10.1016/j.synthmet.2016.09.009 CrossRefGoogle Scholar
  25. 25.
    Tes-Hao K, Jui-Shing L (2006) The effect of a chemical vapor deposited carbon film from acetylene on the properties of graphitized PAN-based carbon fibers. New Carbon Mater 21:297–301. doi: 10.1155/2010/395191 CrossRefGoogle Scholar
  26. 26.
    Lala N, Ramaseshan R, Li B, Sundarrajan S, Barhate R, Liu Y, Ramakrishna S (2007) Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng 97:1357–1365. doi: 10.1002/bit.21351 CrossRefGoogle Scholar
  27. 27.
    Rujitanaroj P, Pimpha N, Supaphol P (2010) Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. J Appl Polym Sci 116:1967–1976. doi: 10.1002/app.31498 Google Scholar
  28. 28.
    Sikareepaisan P, Ruktanonchai U, Supaphol P (2011) Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym 83:1457–1469. doi: 10.1016/j.carbpol.2010.09.048 CrossRefGoogle Scholar
  29. 29.
    Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343. doi: 10.1016/j.ijpharm.2013.05.012 CrossRefGoogle Scholar
  30. 30.
    Song J, Remmers SJA, Shao J, Kolwijck E, Walboomers XF, Jansen JA, Leeuwenburgh SCG, Yang F (2016) Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomed Nanotech Biol Med 12:1357–1364. doi: 10.1016/j.nano.2016.02.005 CrossRefGoogle Scholar
  31. 31.
    Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P (2007) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48:7546–7557. doi: 10.1016/j.polymer.2007.11.019 CrossRefGoogle Scholar
  32. 32.
    Taepaiboon P, Rungsardthong U, Supaphol P (2007) Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm 67:387–397. doi: 10.1016/j.ejpb.2007.03.018 CrossRefGoogle Scholar
  33. 33.
    Chou S, Woodrow KA (2017) Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 65:724–733. doi: 10.1016/j.jmbbm.2016.09.004 CrossRefGoogle Scholar
  34. 34.
    Laha A, Sharma C, Majumdar S (2017) Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh. Mater Sci Eng C 76:782–786. doi: 10.1016/j.msec.2017.03.110 CrossRefGoogle Scholar
  35. 35.
    Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N (2009) Antibacterial activity of Thai Medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia 80:102–104. doi: 10.1016/j.fitote.2008.10.007 CrossRefGoogle Scholar
  36. 36.
    Sudta P, Jiarawapi P, Suksamrarn A, Hongmanee P, Suksamrarn S (2013) Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analog. Chem Pharm Bull 61:194–203. doi: 10.1248/cpb.c12-00874 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Piyachat Chuysinuan
    • 1
  • Supanna Techasakul
    • 1
  • Sunit Suksamrarn
    • 2
  • Nuanchawee Wetprasit
    • 3
  • Poonpilas Hongmanee
    • 4
  • Pitt Supaphol
    • 5
  1. 1.Laboratory of Organic SynthesisChulabhorn Research InstituteBangkokThailand
  2. 2.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceSrinakharinwirot UniversityBangkokThailand
  3. 3.Department of Biotechnology, Faculty of ScienceRamkhamhaeng UniversityBangkokThailand
  4. 4.Department of Pathology, Faculty of Medicine, Ramathibodi HospitalMahidol UniversityBangkokThailand
  5. 5.The Petroleum and Petrochemical College and The Center of Excellent for Petroleum, Petrochemicals and Advanced MaterialsChulalongkorn UniversityBangkokThailand

Personalised recommendations