Polymer Bulletin

, Volume 75, Issue 3, pp 1197–1210 | Cite as

Fabrication and characterization of cellulose acetate/hydroxyapatite composite membranes for the solute separations in Hemodialysis

  • Aneela Hayder
  • Arshad Hussain
  • Ahmad Nawaz Khan
  • Hizba Waheed
Original Paper


Asymmetric composite membranes of cellulose acetate (CA)/hydroxyapatite (HA) are prepared using phase inversion method for the separation of water, urea, glucose, and protein. Various concentrations of HA up to 15 wt% are dispersed uniformly in the CA matrix. The pore size of the CA matrix is tunable by varying the concentration of HA. The flux of water, urea and glucose is ~7 times higher while for BSA ~12 times higher in CA/HA composite membranes than pure CA. Similarly, water absorption capacity of CA/HA composite membranes are increased owing to the incorporation of hydrophilic HA in CA matrix. Moreover, the retention rates are also reasonable in CA/HA composite membranes depending on the difference in porosity of the membranes. The permeation of urea is much higher in the CA/HA composite membranes as compared to pure CA, which is more suitable for hemodialysis. Thereby, such CA/HA composite membrane offers the potential to be used in hemodialysis applications.


Composite membrane Cellulose acetate Hydroxyapatite Hemodialysis Permeation 


  1. 1.
    Qinglei Z, Xiaolong L, Lihua Z (2014) Preparation of PVDF hollow fiber hemodialysis membranes. Membranes 4:81–95CrossRefGoogle Scholar
  2. 2.
    Rotimi O, Oluyomi OO, Timothy OO, Michael OS, Omotola OO, Margaret AA (2014) Challenges of hemodialysis in a new renal care center: call for sustainability and improved outcome. Int J Nephrol Renovasc Dis 7:347–352Google Scholar
  3. 3.
    Wang HM, Chou YT, Wu CS, Yeh JT (2012) Polyester/cellulose acetate composites: preparation, characterization and biocompatibility. J Appl Polym Sci 126:242–251CrossRefGoogle Scholar
  4. 4.
    Harter HA (1983) Review of significant findings from the National cooperative dialysis study and recommendations. Kidney Int Suppl 13:S101–S112Google Scholar
  5. 5.
    Lowrie EG, Laird NM, Henry RR (1983) Protocol for the national cooperative dialysis study. Kidney Int Suppl 13:S11–S18Google Scholar
  6. 6.
    Gao A, Liu F, Xue L (2014) Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis. J Membr Sci 452:390–399CrossRefGoogle Scholar
  7. 7.
    Shakaib M, Ahmed I, Yunus RM, Idris A, Hussain A (2013) Influence of monosodium glutamate additive on the morphology and permeability characteristics of polyamide dialysis membranes. J Appl Polym Sci 128:3346–3355CrossRefGoogle Scholar
  8. 8.
    Zaib J, Arshad H (2016) Synthesis and characterization of polymer membranes for hemodialysis. J Porous Media 16:557–565Google Scholar
  9. 9.
    Sivakumar M, Mohan DR, Rangarajan R (2006) Studies on cellulose acetate polysulfone ultrafiltration membranes II. Effect of additive concentration. J Membr Sci 268:208–219CrossRefGoogle Scholar
  10. 10.
    Humes HD, Fissell WH, Tiranathanagul K (2006) The future of hemodialysis membranes. Kidney Int 69:1115–1119CrossRefGoogle Scholar
  11. 11.
    Idris A, Lee KY, Hing HK (2005) Preparation of cellulose acetate dialysis membrane for separation of Bovine Serum Albumin. J Teknologi 42:35–46Google Scholar
  12. 12.
    Gastaldello K, Melot C, Kahn RJ, Vanherweghem JL, Vincent JL, Tielemans C (2000) Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. Nephrol Dial Transpl 15:224–230CrossRefGoogle Scholar
  13. 13.
    Sevillano G, Rodriguez PM, Martos R, Duque I, Lamas S, Diezmarques ML (1990) Cellulose acetate membrane improves some aspects of red blood cell function in haemodialysis patients. Nephrol Dial Transplant 5:497–499CrossRefGoogle Scholar
  14. 14.
    Raka M, Sirshendu D (2014) Removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane. J Hazard Mater 265:8–19CrossRefGoogle Scholar
  15. 15.
    Mahendran R, Malaisamy R, Mohan D (2004) Preparation, characterization and effect of annealing on performance of cellulose acetate/sulfonated polysulfone and cellulose acetate/epoxy resin blend ultrafiltration membranes. Eur Poly J 40:623–633CrossRefGoogle Scholar
  16. 16.
    Saljoughi E, Sadrzadeh M, Mohammadi T (2009) Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. J Membr Sci 326:627–634CrossRefGoogle Scholar
  17. 17.
    Kee CM, Idris A (2010) Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Sep Pur Tech 75:102–113CrossRefGoogle Scholar
  18. 18.
    Denys P, Esmée VG, Mies JVS, Griet G, Raymond V, Karin GFG, Dimitrios S (2014) New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma. Sci Rep 6:34429–34438Google Scholar
  19. 19.
    Li QH, Li M, Zhu PZ, Wei SC (2012) In vitro synthesis of bioactive hydroxyapatite using sodium hyaluronate as a template. J Mater Chem 22:20257–20265CrossRefGoogle Scholar
  20. 20.
    Radhakumary C, Nair PD, Nair CPR, Mathew S (2012) Chitosan-graft-poly (vinyl acetate) for hemodialysis applications. J Appl Polym Sci 125:2022–2033CrossRefGoogle Scholar
  21. 21.
    Azzaoui K, Lamhamdi A, Mejdoubi EM, Berrabah M, Hammouti B, Elidrissi A, Fouda MMG, Al-Deyab SS (2014) Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohyd Polym 111:41–46CrossRefGoogle Scholar
  22. 22.
    Ain QU, Khan AN, Nabavinia M, Mujahid M (2017) Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications. Mater Sci Eng C 75:807–815CrossRefGoogle Scholar
  23. 23.
    Khalid M, Mujahid M, Amin S, Rawate RS, Nusairol A, Dean GR (2013) Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int 39:39–50CrossRefGoogle Scholar
  24. 24.
    Zavastin D, Cretescu I, Bezdadea M, Bourceanu M, Dragan M, Lisa G, Mangalagiu V, Savic VJ (2010) Preparation, characterization and applicability of cellulose Acetate-polyurethane blend membrane in separation techniques. Colloids Surf A 370:120–128CrossRefGoogle Scholar
  25. 25.
    Sivakumar M, Malaisamy R, Sajitha CJ, Mohan D, Mohan V, Rangarajan R (2000) Preparation and performance of cellulose acetate-polyurethane blend membranes and their applications. J Membr Sci 169:215–228CrossRefGoogle Scholar
  26. 26.
    Amiji MM (1995) Permeability and blood compatibility properties of chitosan poly(ethylene oxide) blend membranes for haemodialysis. Biomaterials 16:593–599CrossRefGoogle Scholar
  27. 27.
    Tihan TG, Ionitaa MD, Popescua RG, Iordachescub D (2009) Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)–hydroxyapatite (HA) composites. Mater Chem Phys 118:265–269CrossRefGoogle Scholar
  28. 28.
    Idris A, Yee HK, Kee CM (2009) Preparation of cellulose acetate dialysis membrane using d-glucose monohydrate as additive. J Teknologi 15:67–76Google Scholar
  29. 29.
    Hizba W, Arshad H, Sarah F (2016) Fabrication, characterization and permeation study of ultrafiltration dialysis membranes. Desalin Water Treat 57:24799–24806CrossRefGoogle Scholar
  30. 30.
    Idris A, Yet LK (2006) Effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J Membr Sci 280:920–927CrossRefGoogle Scholar
  31. 31.
    Richard A (2005) Ward protein-leaking membranes for hemodialysis: a new class of membranes in search of an application. J Am Soc Nephrol 16:2421–2430CrossRefGoogle Scholar
  32. 32.
    Detlef HK, Bernard C (2003) High permeability of dialysis membranes: what is the limit of albumin loss. Nephrol Dial Transplant 18:651–654Google Scholar
  33. 33.
    Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapetite-bacterial cellulose nanocomposites. Compos Sci Tech 66:1825–1832CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Chemical and Materials EngineeringNational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations