Polymer Bulletin

, Volume 75, Issue 3, pp 1123–1139 | Cite as

The effects of surface modification of ground calcium carbonate powdery fillers on the properties of PVC

Original Paper


The effects of surface modification of ground calcium carbonate (GCC) particles on the thermal and mechanical properties of poly(vinyl chloride) (PVC) based composites were investigated. Aminopropyltrimethoxysilane (APS) was used as a modifier for GCC particles. The experimental results indicated that the pre-treatment of GCC particles with NaOH promoted the formation of OH on the surface of GCC particles, which improved the graft of APS on GCC surface and enhanced the interfacial interaction between GCC particles and PVC matrix. The SEM micrographs of the PVC filled with different GCC particles showed that the dispersion of fillers in the PVC matrix was improved by surface modification. The results of TG showed that the thermal properties of PVC filled with NaOH/APS modified GCC particles (PVC/GCC–OH–APS) outweighed those of PVC filled with APS modified GCC particles (PVC/GCC–APS) or raw GCC particles (PVC/GCC). Compared with the use of raw GCC, the use of the surface modified GCC particles, especially the GCC–OH–APS, led to the increase of the tensile strength and impact strength of the composites.


PVC Ground calcium carbonate Composite Surface modification Mechanical properties 



This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20131358), the Aeronautical Science Foundation of China (No. 2011ZF52063 and No. 2014ZF52069), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    Nakamura Y, Fukuoka Y, Iida T (1998) Tensile test of poly (vinyl chloride) filled with ground calcium carbonate particles. J Appl Polym Sci 70(2):311–316. doi: 10.1002/(SICI)1097-4628(19981010)70:2<311:AID-APP11>3.0.CO;2-6 CrossRefGoogle Scholar
  2. 2.
    Endo K (2002) Synthesis and structure of poly (vinyl chloride). Prog Polym Sci 27(10):2021–2054. doi: 10.1016/S0079-6700(02)00066-7 CrossRefGoogle Scholar
  3. 3.
    Chazeau L, Cavaille JY, Canova G et al (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71(11):1797–1808. doi: 10.1002/(SICI)1097-4628(19990314)71:11<1797:AID-APP9>3.0.CO;2-E CrossRefGoogle Scholar
  4. 4.
    Tian M, Chen G, Guo S (2005) Effect of high-energy vibromilling on interfacial interaction and mechanical properties of PVC/nano-CaCO3 composites. Macromol Mater Eng 290(9):927–932. doi: 10.1002/mame.200400375 CrossRefGoogle Scholar
  5. 5.
    Zeng XF, Wang WY, Wang GQ et al (2008) Influence of the diameter of CaCO3 particles on the mechanical and rheological properties of PVC composites. J Mater Sci 43(10):3505–3509. doi: 10.1007/s10853-008-2475-7 CrossRefGoogle Scholar
  6. 6.
    Wan C, Qiao X, Zhang Y et al (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22(4):453–461. doi: 10.1016/S0142-9418(02)00126-5 CrossRefGoogle Scholar
  7. 7.
    Chen HY, Wang J, Ma PY et al (2015) Influence of hydroxylation on fabrication of PVC/CaSO4 composite. Appl Surf Sci 357:2320–2326. doi: 10.1016/j.apsusc.2015.09.234 CrossRefGoogle Scholar
  8. 8.
    Fernando NAS, Thomas NL (2008) The effect of precipitated calcium carbonate on the mechanical properties of poly (vinyl chloride). J Vinyl Addit Technol 10:98–102. doi: 10.1002/vnl.20109 Google Scholar
  9. 9.
    Poompradub S, Luthikaviboon T, Linpoo S et al (2011) Improving oxidation stability and mechanical properties of natural rubber vulcanizates filled with calcium carbonate modified by gallic acid. Polym Bull 66(7):965–977. doi: 10.1007/s00289-010-0396-5 CrossRefGoogle Scholar
  10. 10.
    Liu P, Zhao M, Guo J (2006) Thermal stabilities of poly (vinyl chloride)/calcium carbonate (PVC/CaCO3) composites. J Macromol Sci Part B Phys 45(6):1135–1140. doi: 10.1080/00222340600962650 CrossRefGoogle Scholar
  11. 11.
    Cao YM, Sun J, Yu DH (2002) Preparation and properties of nano-Al2O3 particles/polyester/epoxy resin ternary composites. J Appl Polym Sci 83(1):70–77. doi: 10.1002/app.10020 CrossRefGoogle Scholar
  12. 12.
    Zaman HU, Hun PD, Khan RA et al (2013) Effect of surface-modified nanoparticles on the mechanical properties and crystallization behavior of PP/CaCO3 nanocomposites. J Thermoplast Compos Mater 26(8):1057–1070. doi: 10.1177/0892705711433351 CrossRefGoogle Scholar
  13. 13.
    Jiang H, Kamdem DP (2010) Characterization of the surface and the interphase of PVC–copper amine-treated wood composites. Appl Surf Sci 256(14):4559–4563. doi: 10.1016/j.apsusc.2010.02.047 CrossRefGoogle Scholar
  14. 14.
    Kamal M, Sharma CS, Upadhyaya P et al (2012) Calcium carbonate (CaCO3) nanoparticle filled polypropylene: effect of particle surface treatment on mechanical, thermal, and morphological performance of composites. J Appl Polym Sci 124(4):2649–2656. doi: 10.1002/app.35319 CrossRefGoogle Scholar
  15. 15.
    Bonadies I, Avella M, Avolio R et al (2011) Poly (vinyl chloride)/CaCO3 nanocomposites: influence of surface treatments on the properties. J Appl Polym Sci 122(6):3590–3598. doi: 10.1002/app.34770 CrossRefGoogle Scholar
  16. 16.
    Jeong SB, Yang YC, Chae YB et al (2009) Characteristics of the treated ground calcium carbonate powder with stearic acid using the dry process coating system. Mater Trans 50(2):409–414. doi: 10.2320/matertrans.MRP2008351 CrossRefGoogle Scholar
  17. 17.
    Söhnel O, Mullin JW (1982) Precipitation of calcium carbonate. J Cryst Growth 60(2):239–250. doi: 10.1016/0022-0248(82)90095-1 CrossRefGoogle Scholar
  18. 18.
    Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819. doi: 10.1016/j.compositesa.2010.03.005 CrossRefGoogle Scholar
  19. 19.
    Matuana LM, Woodhams RT, Balatinecz JJ et al (1998) Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polym Compos 19(4):446–455. doi: 10.1002/pc.10119 CrossRefGoogle Scholar
  20. 20.
    Bengtsson M, Oksman K (2006) The use of silane technology in crosslinking polyethylene/wood flour composites. Compos A Appl Sci Manuf 37(5):752–765. doi: 10.1016/j.compositesa.2005.06.014 CrossRefGoogle Scholar
  21. 21.
    Lippincott ER (1963) Infrared spectra of inorganic and coordination compounds. J Am Chem Soc 85(21):3532. doi: 10.1021/ja00904a075 CrossRefGoogle Scholar
  22. 22.
    Dai Lam T, Hoang TV, Quang DT et al (2009) Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Mater Sci Eng A 501(1):87–93. doi: 10.1016/j.msea.2008.09.060 CrossRefGoogle Scholar
  23. 23.
    Sheng Y, Zhou B, Zhao J et al (2004) Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate. J Colloid Interface Sci 272(2):326–329. doi: 10.1016/j.jcis.2003.11.062 CrossRefGoogle Scholar
  24. 24.
    Cohen MH, Grest GS (1979) Liquid-glass transition, a free-volume approach. Phys Rev B 20(3):1077. doi: 10.1103/PhysRevB.20.1077 CrossRefGoogle Scholar
  25. 25.
    Starnes WH (2002) Structural and mechanistic aspects of the thermal degradation of poly (vinyl chloride). Prog Polym Sci 27(10):2133–2170. doi: 10.1016/S0079-6700(02)00063-1 CrossRefGoogle Scholar
  26. 26.
    Shimpi NG, Verma J, Mishra S (2009) Dispersion of nano CaCO3 on PVC and its influence on mechanical and thermal properties. J Compos Mater 44(2):211–219. doi: 10.1177/0021998309344637 CrossRefGoogle Scholar
  27. 27.
    Karayildirim T, Yanik J, Yuksel M et al (2006) The effect of some fillers on PVC degradation. J Anal Appl Pyrol 75(2):112–119. doi: 10.1016/j.jaap.2005.04.012 CrossRefGoogle Scholar
  28. 28.
    Lange FF (1970) The interaction of a crack front with a second-phase dispersion. Philos Mag 22(179):0983–0992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zhi Jiang
    • 2
  • Jingwen Wang
    • 1
  • Renkui Ge
    • 2
  • Chanjun Wu
    • 2
  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Department of Materials Science and Engineering, College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations