Skip to main content
Log in

The effects of surface modification of ground calcium carbonate powdery fillers on the properties of PVC

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of surface modification of ground calcium carbonate (GCC) particles on the thermal and mechanical properties of poly(vinyl chloride) (PVC) based composites were investigated. Aminopropyltrimethoxysilane (APS) was used as a modifier for GCC particles. The experimental results indicated that the pre-treatment of GCC particles with NaOH promoted the formation of OH on the surface of GCC particles, which improved the graft of APS on GCC surface and enhanced the interfacial interaction between GCC particles and PVC matrix. The SEM micrographs of the PVC filled with different GCC particles showed that the dispersion of fillers in the PVC matrix was improved by surface modification. The results of TG showed that the thermal properties of PVC filled with NaOH/APS modified GCC particles (PVC/GCC–OH–APS) outweighed those of PVC filled with APS modified GCC particles (PVC/GCC–APS) or raw GCC particles (PVC/GCC). Compared with the use of raw GCC, the use of the surface modified GCC particles, especially the GCC–OH–APS, led to the increase of the tensile strength and impact strength of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nakamura Y, Fukuoka Y, Iida T (1998) Tensile test of poly (vinyl chloride) filled with ground calcium carbonate particles. J Appl Polym Sci 70(2):311–316. doi:10.1002/(SICI)1097-4628(19981010)70:2<311:AID-APP11>3.0.CO;2-6

    Article  CAS  Google Scholar 

  2. Endo K (2002) Synthesis and structure of poly (vinyl chloride). Prog Polym Sci 27(10):2021–2054. doi:10.1016/S0079-6700(02)00066-7

    Article  CAS  Google Scholar 

  3. Chazeau L, Cavaille JY, Canova G et al (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71(11):1797–1808. doi:10.1002/(SICI)1097-4628(19990314)71:11<1797:AID-APP9>3.0.CO;2-E

    Article  CAS  Google Scholar 

  4. Tian M, Chen G, Guo S (2005) Effect of high-energy vibromilling on interfacial interaction and mechanical properties of PVC/nano-CaCO3 composites. Macromol Mater Eng 290(9):927–932. doi:10.1002/mame.200400375

    Article  CAS  Google Scholar 

  5. Zeng XF, Wang WY, Wang GQ et al (2008) Influence of the diameter of CaCO3 particles on the mechanical and rheological properties of PVC composites. J Mater Sci 43(10):3505–3509. doi:10.1007/s10853-008-2475-7

    Article  CAS  Google Scholar 

  6. Wan C, Qiao X, Zhang Y et al (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22(4):453–461. doi:10.1016/S0142-9418(02)00126-5

    Article  CAS  Google Scholar 

  7. Chen HY, Wang J, Ma PY et al (2015) Influence of hydroxylation on fabrication of PVC/CaSO4 composite. Appl Surf Sci 357:2320–2326. doi:10.1016/j.apsusc.2015.09.234

    Article  CAS  Google Scholar 

  8. Fernando NAS, Thomas NL (2008) The effect of precipitated calcium carbonate on the mechanical properties of poly (vinyl chloride). J Vinyl Addit Technol 10:98–102. doi:10.1002/vnl.20109

    Google Scholar 

  9. Poompradub S, Luthikaviboon T, Linpoo S et al (2011) Improving oxidation stability and mechanical properties of natural rubber vulcanizates filled with calcium carbonate modified by gallic acid. Polym Bull 66(7):965–977. doi:10.1007/s00289-010-0396-5

    Article  CAS  Google Scholar 

  10. Liu P, Zhao M, Guo J (2006) Thermal stabilities of poly (vinyl chloride)/calcium carbonate (PVC/CaCO3) composites. J Macromol Sci Part B Phys 45(6):1135–1140. doi:10.1080/00222340600962650

    Article  CAS  Google Scholar 

  11. Cao YM, Sun J, Yu DH (2002) Preparation and properties of nano-Al2O3 particles/polyester/epoxy resin ternary composites. J Appl Polym Sci 83(1):70–77. doi:10.1002/app.10020

    Article  CAS  Google Scholar 

  12. Zaman HU, Hun PD, Khan RA et al (2013) Effect of surface-modified nanoparticles on the mechanical properties and crystallization behavior of PP/CaCO3 nanocomposites. J Thermoplast Compos Mater 26(8):1057–1070. doi:10.1177/0892705711433351

    Article  CAS  Google Scholar 

  13. Jiang H, Kamdem DP (2010) Characterization of the surface and the interphase of PVC–copper amine-treated wood composites. Appl Surf Sci 256(14):4559–4563. doi:10.1016/j.apsusc.2010.02.047

    Article  CAS  Google Scholar 

  14. Kamal M, Sharma CS, Upadhyaya P et al (2012) Calcium carbonate (CaCO3) nanoparticle filled polypropylene: effect of particle surface treatment on mechanical, thermal, and morphological performance of composites. J Appl Polym Sci 124(4):2649–2656. doi:10.1002/app.35319

    Article  CAS  Google Scholar 

  15. Bonadies I, Avella M, Avolio R et al (2011) Poly (vinyl chloride)/CaCO3 nanocomposites: influence of surface treatments on the properties. J Appl Polym Sci 122(6):3590–3598. doi:10.1002/app.34770

    Article  CAS  Google Scholar 

  16. Jeong SB, Yang YC, Chae YB et al (2009) Characteristics of the treated ground calcium carbonate powder with stearic acid using the dry process coating system. Mater Trans 50(2):409–414. doi:10.2320/matertrans.MRP2008351

    Article  CAS  Google Scholar 

  17. Söhnel O, Mullin JW (1982) Precipitation of calcium carbonate. J Cryst Growth 60(2):239–250. doi:10.1016/0022-0248(82)90095-1

    Article  Google Scholar 

  18. Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819. doi:10.1016/j.compositesa.2010.03.005

    Article  Google Scholar 

  19. Matuana LM, Woodhams RT, Balatinecz JJ et al (1998) Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polym Compos 19(4):446–455. doi:10.1002/pc.10119

    Article  CAS  Google Scholar 

  20. Bengtsson M, Oksman K (2006) The use of silane technology in crosslinking polyethylene/wood flour composites. Compos A Appl Sci Manuf 37(5):752–765. doi:10.1016/j.compositesa.2005.06.014

    Article  Google Scholar 

  21. Lippincott ER (1963) Infrared spectra of inorganic and coordination compounds. J Am Chem Soc 85(21):3532. doi:10.1021/ja00904a075

    Article  Google Scholar 

  22. Dai Lam T, Hoang TV, Quang DT et al (2009) Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Mater Sci Eng A 501(1):87–93. doi:10.1016/j.msea.2008.09.060

    Article  Google Scholar 

  23. Sheng Y, Zhou B, Zhao J et al (2004) Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate. J Colloid Interface Sci 272(2):326–329. doi:10.1016/j.jcis.2003.11.062

    Article  CAS  Google Scholar 

  24. Cohen MH, Grest GS (1979) Liquid-glass transition, a free-volume approach. Phys Rev B 20(3):1077. doi:10.1103/PhysRevB.20.1077

    Article  CAS  Google Scholar 

  25. Starnes WH (2002) Structural and mechanistic aspects of the thermal degradation of poly (vinyl chloride). Prog Polym Sci 27(10):2133–2170. doi:10.1016/S0079-6700(02)00063-1

    Article  CAS  Google Scholar 

  26. Shimpi NG, Verma J, Mishra S (2009) Dispersion of nano CaCO3 on PVC and its influence on mechanical and thermal properties. J Compos Mater 44(2):211–219. doi:10.1177/0021998309344637

    Article  Google Scholar 

  27. Karayildirim T, Yanik J, Yuksel M et al (2006) The effect of some fillers on PVC degradation. J Anal Appl Pyrol 75(2):112–119. doi:10.1016/j.jaap.2005.04.012

    Article  CAS  Google Scholar 

  28. Lange FF (1970) The interaction of a crack front with a second-phase dispersion. Philos Mag 22(179):0983–0992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20131358), the Aeronautical Science Foundation of China (No. 2011ZF52063 and No. 2014ZF52069), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Wang, J., Ge, R. et al. The effects of surface modification of ground calcium carbonate powdery fillers on the properties of PVC. Polym. Bull. 75, 1123–1139 (2018). https://doi.org/10.1007/s00289-017-2081-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2081-4

Keywords

Navigation