Polymer Bulletin

, Volume 75, Issue 3, pp 1055–1073 | Cite as

Synthesis, characterization and dehydrogenase activity of novel biodegradable nanostructure spherical shape poly(urethane-imide-sulfonamide) as pseudo-poly(amino acid)s from l-tyrosine

  • Farhang Tirgir
  • Mahboobeh Soleimani
  • Ghasem Moghadam
  • Mahsa Khorshidi
Original Paper


For the first time, the N,N-(pyromelitoylimidyl)-bis-(4-hydroxy tyrosine dimethyl ester benzyl sulfonamide) (PHTBS) as diphenolic monomer containing tyrosine was formed in three steps. PHTBS employed as a monomer in the design of biodegradable and biological polymers. The polycondensation of the this monomer with various aromatic and aliphatic diisocyanates such as 4,4-methylenebis-(4-phenylisocyanate) (a), hexamethylene diisocyanate (b), isophorone diisocyanate (c) and toluene-2,4-diisocyanate (d) was carried out under traditional polymerization conditions to give poly(urethane-imide-sulfonamide)s (PUIS)s as pseudo-poly(amino acid)s (PAAs). The novel PHTBS and obtained PUISs were characterized with FTIR, 13C-NMR, 1H-NMR spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy and elemental analysis. Differential scanning calorimetry and thermogravimetric analysis were used to determine the thermal properties of the polymers. Morphology probes showed these PUISs were nanoshape polymers. On the basis of thermogravimetric analysis data, such PUISs are thermally stable and can be classified as self-extinguishing polymers. The obtained PUISs possessed more bioactivity, moderate thermal stability and high solubility in common organic solvents. Furthermore, soil enzymatic of the PHTBS and the obtained PUISs assay showed that the synthetic materials are biologically active and then could be classified as bioactive and biodegradable compounds.


Nanostructured polymers Poly(urethane-imide-sulfonamide)s Dehydrogenase activity Tyrosine 



We wish to express our gratitude to the Research Affairs Division, Islamic Azad University, Shahrekord Branch, for partial financial support. Further financial support from Young Researchers and Elites Club is gratefully acknowledged.


  1. 1.
    Ashida K (2007) Polyurethane and related foams, Chap. 5. Taylor & Francis Group, New YorkGoogle Scholar
  2. 2.
    Saad B, Hirt TD, Welti M, Uhlschmid GK, Neuenschwander P, Suter UW (1997) Development of degradable polyesterurethanes for medical applications: in vitro and in vivo evaluations. J Biomed Mater Res. doi: 10.1002/(SICI)1097-4636(199707)36:1<65:AID-JBM8>3.0.CO;2-J Google Scholar
  3. 3.
    Labow RS, Meek E, Santerre JP (2001) Hydrolytic degradation of poly(carbonate)-urethanes by monocyte-derived macrophages. Biomaterials. doi: 10.1016/S0142-9612(01)00049-7 Google Scholar
  4. 4.
    Kim YD, Kim SCH (1998) Effect of chemical structure on the biodegradation of polyurethanes under composting conditions. Polym Degrad Stab. doi: 10.1016/S0141-3910(98)00017-2 Google Scholar
  5. 5.
    Chen MY, Ike M, Fujita M (2002) Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ Toxicol. doi: 10.1002/tox.10035 Google Scholar
  6. 6.
    Nakagawa Y, Tayama S (2000) Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch Toxicol. doi: 10.1007/s002040050659 Google Scholar
  7. 7.
    Kimberly AH, Natalie DM, Joachim K (1998) Comparative histological evaluation of new tyrosine-derived polymers and poly(l-lactic acid) as a function of polymer degradation. J Biomed Mater Res. doi: 10.1002/(SICI)1097-4636(19980905)41:3<443:AID-JBM14>3.0.CO;2-J Google Scholar
  8. 8.
    Kohn J, Langer R (1987) Polymerization reactions involving the side chains of α-l-amino acids. J Am Chem Soc. doi: 10.1021/ja00237a030 Google Scholar
  9. 9.
    Parth NS, Rachel LM, Stephanie TL, Yang HY (2009) Electrospinning of l-tyrosine polyurethanes for potential biomedical applications. Polymer. doi: 10.1016/j.polymer.2009.02.048 Google Scholar
  10. 10.
    Tangpasuthadol V, Shefer A, Yu CH, Zhou J, Kohan J (1997) Thermal properties and enthalpy relaxation of tyrosine-derived polyarylates. J Appl Polym Sci. doi: 10.1002/(SICI)1097-4628(19970314)63:11<1441:AID-PP6>3.0.CO;2-M Google Scholar
  11. 11.
    Suarez N, Laredo E, Bello A, Kohan J (1997) Molecular relaxation mechanisms of tyrosine-derived polycarbonates by thermally stimulated depolarization currents. J Appl Polym Sci. doi: 10.1002/(SICI)1097-z628(19970314)63:11<1457:AID-APP8>3.0.CO;2-L Google Scholar
  12. 12.
    Gupta AS, Lopina ST (2005) Properties of l-tyrosine based polyphosphates pertinent to potential biomaterial applications. Polymer. doi: 10.1016/j.polymer.2005.01.023 Google Scholar
  13. 13.
    Mallakpour S, Tirgir F, Sabzalian MR (2011) Synthesis, characterization and in vitro antimicrobial and biodegradability study of pseudo-poly(amino acid)s derived from N,N-(pyromellitoyl)-bis-l-tyrosine dimethyl ester as a chiral bioactive diphenolic monomer. Amino acids. doi: 10.1007/s00726-010-0686-0 Google Scholar
  14. 14.
    Tirgir F, Sabzalian MR, Moghadam G (2015) Fabrication and DFT structure calculations of novel biodegredable diphenolic monomer containing D-4-hydroxyphenylglycine moiety as biologically active substituent: compression with toxic industrial bisphenol-A. Des Monomers Polym. doi: 10.1080/15685551.2015.1012619 Google Scholar
  15. 15.
    Tangpasuthadol V, Pendharkar S, Peterson M, Kohn J (2000) Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials. doi: 10.1016/S0142-9612(00)00105-8 Google Scholar
  16. 16.
    Bourke SL, Kohn J (2003) Polymers derived from the amino acid l-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Deliv Rev 55:447. doi: 10.1016/S0169-409X(03)00038-3 CrossRefGoogle Scholar
  17. 17.
    Kohn J, Langer R (1987) Polymerization reactions involving the side chains of a-l-amino acids. J Am Chem Soc. doi: 10.1021/ja00237a030 Google Scholar
  18. 18.
    Mallakpour S, Tirgir F, Sabzalian MR (2011) Synthesis and structural characterization of novel biologically active and thermally stable poly(ester-imide)s containing different natural amino acids linkages. J Polym Res. doi: 10.1007/s10965-010-9427-z Google Scholar
  19. 19.
    Mallakpour S, Tirgir F, Sabzalian MR (2010) Novel biobased polyurethanes synthesized from nontoxic phenolic diol containing l-tyrosine moiety under green media. J Polym Environ. doi: 10.1007/s10924-010-0234-8 Google Scholar
  20. 20.
    Mallakpour S, Dinari M (2013) Straightforward and green method for the synthesis of nanostructure poly(amide-imide)s-containing benzimidazole and amino acid moieties by microwave irradiation. Polym Bull. doi: 10.1007/s00289-012-0875-y Google Scholar
  21. 21.
    Mallakpour S, Dinari M (2009) Preparation of thermally stable and optically active organosoluble aromatic polyamides containing l-leucine amino acid under green conditions. Polym Bull. doi: 10.1007/s00289-009-0113-4 Google Scholar
  22. 22.
    Mallakpour S, Zeraatpisheh F (2011) Pseudo-poly(amino acid)s: study on construction and characterization of novel chiral and thermally stable nanostructured poly(ester-imide)s containing different trimellitylimido-amino acid-based diacids and pyromellitoyl-l-tyrosine-based diol. Colloid Polym Sci. doi: 10.1007/s00396-011-2422-z Google Scholar
  23. 23.
    Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull. doi: 10.1007/s00289-008-0896-8 Google Scholar
  24. 24.
    Reddy KR, Raghu AV, Jeong HM, Siddaramaiah (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym. doi: 10.1163/156855509X412054 Google Scholar
  25. 25.
    Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. doi: 10.1016/j.addr.2004.02.014 Google Scholar
  26. 26.
    Gu FX, Karnik R, Wang AZ, et al. (2007) Nanotoday, Over the past decade, there has been an increasing interest in using nanotechnology for cancer therapy. The development of smart targeted nanoparticles (NPs) that can deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. We highlight some of the promising classes of targeting molecules that are under development for the delivery of NPs. We also review the emerging technologies for the fabrication of targeted NPs using microfluidic devices. doi: 10.1016/S1748-0132(07)70083-X
  27. 27.
    Hall IH, Wong OT, Scovill JP (1995) The cytotoxicity of N-pyridinyl and N-quinolinyl substituted derivatives of phthalimide and succinimide. Biomed Pharmacother. doi: 10.1016/0753-3322(96)82631-X Google Scholar
  28. 28.
    Chan SH, Lam KH, Chiu CH et al (2009) The preparation and in vitro antiproliferative activity of phthalimide based ketones on MDAMB-231 and SKHep-1 human carcinoma cell lines. Eur J Med Chem. doi: 10.1016/j.ejmech.2008.10.024 Google Scholar
  29. 29.
    Kasoju N, Bora DK, Bhonde RR, Bora U (2010) Synthesis, characterization, and application of novel biodegradable self-assembled 2-(N-phthalimido) ethyl-palmitate nanoparticles for cancer therapy. J Nanopart Res. doi: 10.1007/s11051-009-9754-3 Google Scholar
  30. 30.
    Abo-Baker AM, Hassan MA, Temirek HH, Mosallam AM (2012) Synthesis of some new heterocyclic nitrogen compounds starting from pyromellitic dianhydride. Orient J Chem 28(4):1567–1578CrossRefGoogle Scholar
  31. 31.
    Mehdi SA (2008) MSc. Thesis, Chem Dept College Sci Univ of BaghdadGoogle Scholar
  32. 32.
    Lee YR, Kim SC, Lee H, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res. doi: 10.1007/s13233-011-0106-7 Google Scholar
  33. 33.
    Tsou CH, Lee HT, Hung WS, Wang CC, Shu CC, Suen MC, Guzman MD (2016) Synthesis and properties of antibacterial polyurethane with novel bis(3-pyridinemethanol) silver chain extender. Polymer. doi: 10.1016/j.polymer.2016.01.042 Google Scholar
  34. 34.
    Hsiao SH, Chang YH (2004) New soluble aromatic polyamides containing ether linkages and laterally attached p-terphenyls. Eur Polym J. doi: 10.1016/j.eurpolymj.2004.04.019 Google Scholar
  35. 35.
    Liaw DJ, Huang CC, Chen WH (2006) Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2-dimethyl-4,4-biphenylene units. Polymer. doi: 10.1016/j.polymer.2006.01.028 Google Scholar
  36. 36.
    Mallakpour S, Dinari MJ (2011) Progress in synthetic polymers based on natural amino acids. Macromol Sci A. doi: 10.1080/15226514.2011.586289 Google Scholar
  37. 37.
    Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res (Appl Biomater). doi: 10.1002/(SICI)1097-4636(1999)48:3<342:AID-JBM20>3.0.CO;2-7 Google Scholar
  38. 38.
    Gupta AS, Lopina ST (2004) Synthesis and characterization of l-tyrosine based novel polyphosphates for potential biomaterial applications. Polymer. doi: 10.1016/j.polymer.2004.04.052 Google Scholar
  39. 39.
    Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Karimi Zarchi MA, Tayefi M, Tirgir F, Sabzalian MR (2012) Synthesis and degradation study of novel polyamides derived from a biologically active aromatic diacid monomer 5-(2-phthalimidoethanesulfonamido) isophthalic acid. J Polym Res. doi: 10.1007/s10965-012-9865-x Google Scholar
  41. 41.
    Karimi Zarchi MA, Tayefi M, Tirgir F, Sabzalian MR (2011) Synthesis, characterization, and soil biodegradation study of polyamides derived from the novel bioactive diacid monomer 5-(2-phthalimidoethanesulfonamido) isophthalic acid. J Appl Polym Sci. doi: 10.1002/app.33839 Google Scholar
  42. 42.
    Karimi Zarchi MA, Tayefi M, Tirgir F, Sabzalian MR (2011) An environmentally compatible synthesis of polyesters derived from 5-(2-phthalimidoethanesulfonamido) isophthalic acid as a novel diacid monomer. J Appl Polym Sci. doi: 10.1002/app.33983 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Farhang Tirgir
    • 1
  • Mahboobeh Soleimani
    • 2
  • Ghasem Moghadam
    • 2
  • Mahsa Khorshidi
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceShahrekord BranchShahrekordIran
  2. 2.Young Researchers and Elite ClubShahrekord BranchShahrekordIran

Personalised recommendations