Polymer Bulletin

, Volume 75, Issue 3, pp 947–962 | Cite as

Study of the structural orientation and mechanical strength of the electrospun nanofibers from polymers with different chain rigidity and geometry

Original Paper
  • 89 Downloads

Abstract

Structure of nano amorphous matter has not been studied sufficiently yet due to the difficulty in both operation of nano matter and characterization of their structure. In this work, a detailed study of the structural orientation within amorphous polymeric nanofiber and its mechanical strength was conducted for a highly thermal resistant amorphous polymer: poly(phthalazinone ether ketone) (PPEK). Poly(butylene terephthalate) (PBT), a semi-crystalline polymer with partial difference in chain flexibility and geometry to PPEK, was chosen for a comparative discussion. For the method, highly aligned PPEK and PBT nanofiber bundles were prepared by electrospinning with a home-made book-like collecting device. X-ray experiments were conducted to research their structural orientation, and tension experiments were conducted to research their mechanical properties. It was found that the amorphous PPEK nanofibers showed relatively low orientation degree of polymer chain limited by its rigid and twisted segments within the polymer chain, while PBT nanofibers showed not only highly ordered crystal structure but also very large shish length, beneficial from the co-existence of rigid and flexible segments. The above structural information was well supported by their uniaxial tensile behaviors, where PBT nanofiber manifested much larger ultimate stress σ, failure strain ε, Young’s modulus E and toughness than those of PPEK nanofibers and commercial PBT plastic. However, the electrospun PBT nanofibers’ orientation degree, within the range of 0.45–0.7, is much lower than that of some reported melt-spun PBT fibers with the orientation degree above 0.9. Therefore, it can be concluded that the instinct characterization of polymer chain and processing technique have a much more significant influence than size effect on the structural orientation and mechanical strength of nanofibers rather than size effect.

Keywords

Aligned nanofibers Structural orientation Flexibility Mechanical properties 

Notes

Acknowledgements

The authors acknowledge the assistance of SSRF for the synchrotron SAXS experimental setup. The financial support of this work was provided by the Natural Science Foundation of China (NSFC) program (No. 21374014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructure: synthesis, characterization, and application. Adv Mater 15:353–389. doi: 10.1002/adma.200390087 CrossRefGoogle Scholar
  2. 2.
    Greiner A, Wendorff JH (2007) Electrosinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703. doi: 10.1002/anie.200604646 CrossRefGoogle Scholar
  3. 3.
    Gheibi A, Latifi M, Merati AA, Bagherzadeh R (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21:469. doi: 10.1007/s10965-014-0469-5 CrossRefGoogle Scholar
  4. 4.
    Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785. doi: 10.1039/C1EE02201F@@@10.1039/C1EE02201F CrossRefGoogle Scholar
  5. 5.
    Guo S, Ke Q, Wang H, Jin X, Li Y (2012) Poly(butylene terephthalate) electrospun/melt-blow composite mats for white blood cell filtration. J Appl Polym Sci 128:3652–3659. doi: 10.1002/app.38423 CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biometer 72B:156–165. doi: 10.1002/jbm.b.30128 CrossRefGoogle Scholar
  7. 7.
    Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586. doi: 10.1016/j.memsci.2006.04.026 CrossRefGoogle Scholar
  8. 8.
    Faccini M, Borja G, Borerrigter M, Martín DM, Crespiera SM, Vázquez-Campos S, Aubouy L, Amantia D (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015:9. doi: 10.1155/2015/247471 CrossRefGoogle Scholar
  9. 9.
    Liu ZH, Pan CT, Su CY, Lin LW, Chen YJ, Tsai JS (2014) A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an interdigital electrode. Sens Actuators A 211:78–88. doi: 10.1016/j.sna.2014.03.012 CrossRefGoogle Scholar
  10. 10.
    Liu N, Fang G, Wan J, Zhou H, Long H, Zhao X (2011) Electrospun PEDOT:PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J Mater Chem 21:18962. doi: 10.1039/c1jm14491j CrossRefGoogle Scholar
  11. 11.
    Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sourc 196:4886–4904. doi: 10.1016/j.jpowsour.2011.01.090 CrossRefGoogle Scholar
  12. 12.
    Hou J, Xue H, Li LL, Dou Y, Wu Z, Zhang P (2016) Fabrication and morphology study of electrospun cellulose acetate/polyethylenimine nanofiber. Polym Bull 73:2889–2906. doi: 10.1007/s00289-016-1630-6 CrossRefGoogle Scholar
  13. 13.
    Arinstein A, Zussman E (2011) Electrospun polymer nanofibers: mechanical and thermodynamic perspectives. J Polym Sci Pol Phys 49:691–707. doi: 10.1002/polb.22247 CrossRefGoogle Scholar
  14. 14.
    Arinstein A, Burman M, Gendelman O, Zussman E (2007) Effect of supramolecular structure on polymer nanofibre elasticity. Nat Nanotechnol 2:59–62. doi: 10.1038/nnano.2006.172 CrossRefGoogle Scholar
  15. 15.
    Yao J, Bastiaansen C, Peijs T (2014) High strength and high modulus electrospun nanofibers. Fibers 2:158–186. doi: 10.3390/fib2020158 CrossRefGoogle Scholar
  16. 16.
    Chen S, Han D, Hou H (2011) High strength electrospun fibers. Polym Adv Technol 22:295–303. doi: 10.1002/pat.1864 CrossRefGoogle Scholar
  17. 17.
    Kongkhlang T, Tashiro K, Kotaki M, Chirachanchai S (2008) Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc 130:15460–15466. doi: 10.1021/ja804185s CrossRefGoogle Scholar
  18. 18.
    Chen S, Hu P, Greiner A, Cheng C, Cheng H, Chen F, Hou H (2008) Electrospun nanofiber belts made from high performance copolyimide. Nanotechnology 19:15604. doi: 10.1088/0957-4484/19/01/015604 CrossRefGoogle Scholar
  19. 19.
    Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, Rabolt JF (2007) Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc 129:2777–2782. doi: 10.1021/ja065043f CrossRefGoogle Scholar
  20. 20.
    Wei K, Xia JH, Kimura N, Nakamura T, Pan ZJ, Chen GQ, Kim BS, Kim IS (2011) Tensile strength of single electrospun nanofibers. Adv Mater Res 175–176:294–298. doi: 10.4028/www.scientific.net/AMR.175-176.294 CrossRefGoogle Scholar
  21. 21.
    Tao D, Higaki Y, Ma W, Wu H, Shinohara T, Yano T, Takahara A (2015) Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers. Polymer 60:284–291. doi: 10.1016/j.polymer.2015.01.048 CrossRefGoogle Scholar
  22. 22.
    Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020. doi: 10.1021/la034234i CrossRefGoogle Scholar
  23. 23.
    Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761. doi: 10.1021/ja048648p CrossRefGoogle Scholar
  24. 24.
    Picciani PHS, Medeiros ES, Pan Z, Wood DF, Orts WJ, Mattoso LHC, Soares BG (2010) Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers. Macromol Mater Eng 295:618–627. doi: 10.1002/mame.201000019 CrossRefGoogle Scholar
  25. 25.
    Gazzano M, Gualandi C, Zucchelli A, Sui T, Korsunsky AM, Reinhard C, Focarete ML (2015) Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer 63:154–163. doi: 10.1016/j.polymer.2015.03.002 CrossRefGoogle Scholar
  26. 26.
    Lee J, Deng Y (2013) Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber. Polym Bull 70:1205–1219. doi: 10.1007/s00289-012-0842-7 CrossRefGoogle Scholar
  27. 27.
    Chae HG, Kumar S (2008) Making strong fibers. Science 319:908–909. doi: 10.1126/science.1153911 CrossRefGoogle Scholar
  28. 28.
    Yang W, Bin Y, Yuan Y, Matsuo M (2016) Evaluation for most probable distance between adjacent amorphous molecular chains taking preferred orientation with respect to a spinning fiber. Polymer 103:112–123. doi: 10.1016/j.polymer.2016.09.029 CrossRefGoogle Scholar
  29. 29.
    Shi R, Bin YZ, Yang WX, Wang D, Wang JY, Jian XG (2016) Optimization and characterization of poly(phthalazinone ether ketone) (PPEK) heat-resistant porous fibrous mat by electrospinning. Appl Surf Sci 379:282–290. doi: 10.1016/j.apsusc.2016.04.079 CrossRefGoogle Scholar
  30. 30.
    Cozza ES, Ma Q, Monticelli O, Cebe P (2013) Nanostructured nanofibers based on PBT and POSS: effect of POSS on the alignment and macromolecular orientation of the nanofibers. Eur Polym J 49:33–40. doi: 10.1016/j.eurpolymj.2012.10.006 CrossRefGoogle Scholar
  31. 31.
    Shi XQ, Ito H, Kikutani T (2006) Structure development and properties of high-speed melt spun poly(butylene terephthalate)/poly(butylene adipate-co-terephthalate) bicomponent fibers. Polymer 47:611–616. doi: 10.1016/j.polymer.2005.11.051 CrossRefGoogle Scholar
  32. 32.
    Sun HL, Kyoung HK, Takeshi K, Hyun HC (2003) Fine structure formation and physical properties of poly(butylene terephthalate) fibres in high-speed melt spinning. E-Polymers 3:353–364. doi: 10.1515/epoly.2003.3.1.353 CrossRefGoogle Scholar
  33. 33.
    Carr PL, Jakeways R, Kein JL, Ward IM (1997) Tensile drawing, morphology, and mechanical properties of poly(butylene terephthalate). J Polym Sci Pol Phys 35:2465–2481. doi: 10.1002/(SICI)1099-0488(19971115)35:15 CrossRefGoogle Scholar
  34. 34.
    Zussman E, Rittel D, Yarin AL (2003) Failure modes of electrospun nanofibers. Appl Phys Lett 82:3958. doi: 10.1063/1.1579125 CrossRefGoogle Scholar
  35. 35.
    Afeworki M, Brant P, Lustiger A, Norman A (2015) Solid-state 13C NMR and synchrotron SAXS/WAXS studies of uniaxially-oriented polyethylene. Solid State Nucl Mag 72:27–40. doi: 10.1016/j.ssnmr.2015.10.003 CrossRefGoogle Scholar
  36. 36.
    Tian Y, Zhu C, Gong J, Ma J, Xu J (2015) Transition from shish-kebab to fibrillar crystals during ultra-high hot stretching of ultra-high molecular weight polyethylene fibers: in situ small and wide angle X-ray scattering studies. Eur Polym J 73:127–136. doi: 10.1016/j.eurpolymj.2015.10.006 CrossRefGoogle Scholar
  37. 37.
    Xu H, An M, Lv Y, Zhang L, Wang Z (2016) Structural development of gel-spinning UHMWPE fibers through industrial hot-drawing process analyzed by small/wide-angle X-ray scattering. Polym Bull. doi: 10.1007/s00289-016-1742-z Google Scholar
  38. 38.
    Xin G, Yao T, Sun H, Scott SM, Shao D, Wang G, Lian J (2015) Highly thermally conductive and mechanically strong graphene fibers. Science 349:1083–1087. doi: 10.1126/science.aaa6502 CrossRefGoogle Scholar
  39. 39.
    Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487. doi: 10.1016/0956-7151(94)90502-9 CrossRefGoogle Scholar
  40. 40.
    Apostolov AA, Fakirov S, Stamm M, Patil RD, Mark JE (2000) Alpha–beta transition in poly(butylene terephthalate) as revealed by small-angle X-ray scattering. Macromolecules 33:6856–6860. doi: 10.1021/ma000338d CrossRefGoogle Scholar
  41. 41.
    Wang C, Fang C, Wang C (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29. doi: 10.1016/j.polymer.2015.07.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations