Polymer Bulletin

, Volume 75, Issue 3, pp 925–945 | Cite as

Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application

  • S. K. Shahenoor Basha
  • G. Sunita Sundari
  • K. Vijay Kumar
  • M. C. Rao
Original Paper

Abstract

Solid polymer electrolyte has been prepared with the combination of PVP (poly vinyl pyrrolidone) and magnesium sulfate heptahydrate (MgSO4·7H2O) by solution cast technique and subsequently characterized for possible polymer battery application. Structural studies were carried out by XRD technique. DSC analysis revealed that the micro-porous polymer membrane is thermally stable up to 300 °C. The surface morphology of the films was analyzed by SEM. Electrical conductivity was performed using AC impedance analyzing technique in the frequency range from 4 kHz to 5 MHz. Complex impedance spectroscopy revealed that the enhancement in electrical conductivity by salt doping and the conductivity maximum was obtained for 15 wt% of MgSO4·7H2O salt concentration. Optical absorption studies were carried out on to the prepared films in the wavelength range 200–600 nm. Solid-state polymer battery has been fabricated with the configuration of Mg+/(PVP + MgSO4·7H2O)/(I2 + C + electrolyte) and discharge characteristics were studied for a constant load of 100 kΩ. The cell parameters like open-circuit voltage, short circuit current, energy density and power density were calculated.

Keywords

PVP XRD DSC SEM Optical Dielectric properties Discharge characteristics 

References

  1. 1.
    Tsutsumi H, Suzuki A (2014) Cross-linked poly (oxetane) matrix for polymer electrolyte containing lithium ions. Solid State Ion 262:761–764CrossRefGoogle Scholar
  2. 2.
    Wu HY, Chen YH, Saikia D (2013) Synthesis, structure and electrochemical characterization and dynamic properties of double core branched organic–inorganic hybrid electrolytes membranes. J Membr Sci 447:274–286CrossRefGoogle Scholar
  3. 3.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  4. 4.
    Bhattacharya B, Lee JY, Geng J, Jung HT, Park JK (2009) Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells. Langmuir 25:3276–3281CrossRefGoogle Scholar
  5. 5.
    Zheng T, Zhou Q, Li Q (2014) A new branched copolyether-based polymer electrolyte for lithium batteries. Solid State Ion 259:9–13CrossRefGoogle Scholar
  6. 6.
    Nagarale RK, Bhattacharya B, Jadhav NA, Singh PK (2011) Synthesis and electrochemical study of a functional ionic polymer. Macromol Chem Phys 212:1751–1759CrossRefGoogle Scholar
  7. 7.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–462CrossRefGoogle Scholar
  8. 8.
    Macdonald JR, Potter D (1987) A flexible procedure for analyzing impedance spectroscopy results: description and illustrations. Solid State Ion 23:61–79CrossRefGoogle Scholar
  9. 9.
    Kalaignan GP, Kang MS, Kang YS (2006) Effects of compositions on properties of PEO–KI–I2 salts polymer electrolytes for DSSC. Solid State Ion 177:1091–1097CrossRefGoogle Scholar
  10. 10.
    Zhou X, Yin Y, Wang Z (2011) Effect of hot pressing on the ionic conductivity of the PEO/LiCF3SO3 based electrolyte membranes. Solid State Ion 196:18–24CrossRefGoogle Scholar
  11. 11.
    Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass transition temperature in polymer films. Euro Phys Lett 27:59–64CrossRefGoogle Scholar
  12. 12.
    Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695–700CrossRefGoogle Scholar
  13. 13.
    Ted M, Pappenfus Wesley A, Henderson Owens BB (2004) Ionic conductivity of a poly (vinylpyridinium)/silver iodide solid polymer electrolyte system. Solid State Ion 171:41–44CrossRefGoogle Scholar
  14. 14.
    Mann Kent R, William H, Smyrl S, Rao Sreepathi, Subba Rao UV (1994) Preparation and characterization of a new polymer battery using PA+ AgNO3 electrolyte. J Mater Sci Lett 13:1771–1772CrossRefGoogle Scholar
  15. 15.
    Abdelrazek EM (2004) Physical properties of MgCl2-filled PMMA films for optical applications. Phys B 351:83–89CrossRefGoogle Scholar
  16. 16.
    Pandey GP, Agrawal RC, Hashmi SA (2011) Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873CrossRefGoogle Scholar
  17. 17.
    Chu D, Jiang RJ (1999) Comparative studies of polymer electrolyte membrane fuel cell stack and single cell. J Power Sources 80:226–234CrossRefGoogle Scholar
  18. 18.
    Singh Manjeet, Singh Vivek K, Surana Karan, Bhattacharya B, Singh Pramod K, Rhee HW (2013) New polymer electrolyte for electrochemical application. J Ind Eng Chem 19:819–822CrossRefGoogle Scholar
  19. 19.
    Tomar Ritu, Sharma Chirag R (2014) Studies on conducting PVP polymer composites for AC conduction. Int J Sci Eng Technol Res 3:3023–3026Google Scholar
  20. 20.
    Mohamad SA, Yahya R, Ibrahim ZA, Arof AK (2007) Photovoltaic activity in a ZnTe/PEO–chitosan blend electrolyte junction. Ionics 91:1194–1198Google Scholar
  21. 21.
    Agrawal RC, Pandey GP (2008) Experimental investigations on a proton conducting nanocomposite polymer electrolyte. J Phys D Appl Phys 41:055409CrossRefGoogle Scholar
  22. 22.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polym 37:1371–1376CrossRefGoogle Scholar
  23. 23.
    Morales E, Acosta JL (1997) Thermal and electrical characterization of plasticized polymer electrolytes based on polyethers and polyphosphazene blends. Solid State Ion 96:99–106CrossRefGoogle Scholar
  24. 24.
    Cheng Q, Cui Z, Li J (2014) Preparation and performance of polymer electrolyte based on poly (vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery. J Power Sources 266:401–413CrossRefGoogle Scholar
  25. 25.
    Reddeppa N, Sharma AK, Rao VVRN (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41CrossRefGoogle Scholar
  26. 26.
    Arof AK, Amirudin S, Yusof SZ (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867CrossRefGoogle Scholar
  27. 27.
    Williamson MJ, Southall JP, Hubbard HVSA (1998) NMR measurements of ionic mobility in model polymer electrolyte solutions. Electrochim Acta 43:1415–1420CrossRefGoogle Scholar
  28. 28.
    Ramesh S, Arof AK (2001) Structural, thermal and electrochemical characteristics of poly vinyl chloride (PVC) based polymer electrolytes. J Power Sources 99:41–47CrossRefGoogle Scholar
  29. 29.
    Davis PW, Shilliday TS (1960) Some optical properties of cadmium telluride. Phys Rev 118:1020–1022CrossRefGoogle Scholar
  30. 30.
    Thutupalli GKM, Tomlin SG (1976) The optical properties of thin films of cadmium and zinc selenides and tellurides. J Phys D Appl Phys 9:1639–1646CrossRefGoogle Scholar
  31. 31.
    Sk Shahenoor Basha, Sunita Sundari G, Vijaya Kumar K (2016) Studies on electrical properties of potassium acetate complexed with polyvinyl alcohol for electrochemical cell applications. Mater Today Proc 3:11–20CrossRefGoogle Scholar
  32. 32.
    Venkata Subba Rao C, Ravi M, Raja V, Balaji Bhargav P, Sharma Ashok Kumar, Narasimha Rao VVR (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536CrossRefGoogle Scholar
  33. 33.
    Sk Shahenoor Basha, Sunita Sundari G, Vijaya Kumar K (2016) Effect of Al2O3 on PVP based polymer electrolyte films doped with MgCl2·6H2O for solid state battery applications. Int J Chem Tech Res 9:383–391Google Scholar
  34. 34.
    Diilip K, Pradhan RNP, Chowdary B, Samantaray K (2008) Studies of dielectric relaxation and AC, conductivity behavior of plastisized polymer nano composite electrolytes. Int J Electrochem Sci 3:597–608Google Scholar
  35. 35.
    Mohd Z, Iqbal R (2016) Structural.electrical conductivity and dielectric behavior of Na2SO4-LDT Composite solid electrolyte. J Adv Res 7:135–141CrossRefGoogle Scholar
  36. 36.
    Kamalesh P (2011) Development of magnisio ferrite doped polymer electrolyte system for battery applications. Int J Mat Sci 1:9–17Google Scholar
  37. 37.
    Deraman SK, Mohamed NS, Subban RHY (2014) Ionic liquid incorporated PVC based polymer electrolytes: electrical and dielectric properties. Sains Malays 43:877–883Google Scholar
  38. 38.
    Anji Reddy P, Ranver Kumar K (2011) AC-Impedence and dielectric spectroscopic studies of Mg2+ ion conducting PVA-PEG blended polymer electrolytes. Bull Mater Sci 34:1063–1067CrossRefGoogle Scholar
  39. 39.
    Melagiriyappa E, Veena M, Somasekharappa AG, Shankara Murthy J, Jayanna HS (2014) Dielectric behavior and ac electrical conductivity in samarium substituted Mg–Ni ferrites. Ind J Phys 88:795–801CrossRefGoogle Scholar
  40. 40.
    Hema M, Selvasekarapandian S, Arun Kumar D, Sankuntala A, Nithya H (2009) FTIR, XRD and AC impedence spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I). J Non Cryst Solids 355:84–90CrossRefGoogle Scholar
  41. 41.
    Austin Suthanthiraj S, Joice Sheeba D, Joseph Paul B (2009) Impact of ethylene carbonate onion transport characteristics of PVdF–AgCF3SO3 polymer electrolyte system. Mater Res Bull 44:1534–1539CrossRefGoogle Scholar
  42. 42.
    Bhaskaran R, Selavasekarapandiam S, Kuwata N, Kawamura Hattori JT (2006) AC Impedance, DSC and FT-IR investigations on (x)PVAc–(1 − x)PVdF blends with LiClO4. Mater Chem Phys 98:55–61CrossRefGoogle Scholar
  43. 43.
    Ramesh S, Pohling O (2010) Effect of ethylene carbonate on the ionic conduction in poly (vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes. Polym Chem 1:702–707CrossRefGoogle Scholar
  44. 44.
    Rajendran S, Babu Ravi Sankar, Siva Kumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Membr Sci 315:67–73CrossRefGoogle Scholar
  45. 45.
    Ravinder D, Ramana Reddy AV, Ranga Mohan G (2002) Abnormal dielectric behaviour in polycrystalline zinc substituted manganese ferrites at high frequencies. Mater Lett 52:259–265CrossRefGoogle Scholar
  46. 46.
    Yang CC (2006) Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH. Mater Sci Eng B 131:256–262CrossRefGoogle Scholar
  47. 47.
    Chandra A, Agrawal RC, Mahipal YK (2009) Ion transport property studies on PEO–PVP blended solid polymer electrolyte membrane. J Phys D Appl Phys 42:135107CrossRefGoogle Scholar
  48. 48.
    Shukla N, Awalendra K, Thakur Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659Google Scholar
  49. 49.
    Qian X, Gu N, Zhiliang C (2001) Methods to study the ionic conductivity of polymeric electrolytes using a.c impedance spectroscopy. J Solid State Electrochem 6:8–15CrossRefGoogle Scholar
  50. 50.
    Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • S. K. Shahenoor Basha
    • 1
  • G. Sunita Sundari
    • 1
  • K. Vijay Kumar
    • 2
  • M. C. Rao
    • 3
  1. 1.Solid State Ionics Laboratory, Department of PhysicsK. L. UniversityGunturIndia
  2. 2.Department of PhysicsDayananda Sagar Academy of Technology and ManagementBangaloreIndia
  3. 3.Department of PhysicsAndhra Loyola CollegeVijayawadaIndia

Personalised recommendations