Advertisement

Polymer Bulletin

, Volume 75, Issue 3, pp 891–907 | Cite as

Synthesis of associative block copolymers electrolytes via RAFT polymerization

  • Sergio Díaz-Silvestre
  • Enrique Saldívar-Guerra
  • Claudia Rivera-Vallejo
  • Claude St Thomas
  • Judith Cabello-Romero
  • Ramiro Guerrero-Santos
  • Enrique Jiménez-Regalado
Original Paper

Abstract

In this work, the synthesis of associative electrolyte copolymers via the RAFT polymerization technique in solution media is reported. Well-defined polyelectrolytes as multiblock copolymers or multistickers were prepared. Previously, an hydrophilic macroRAFT agent of a statistic copolymer P(MAA-co-EA) was prepared using methacrylic acid (MAA) and ethyl acrylate (EA). Afterwards, chain extensions of the macroagent were carried out by further polymerization of stearyl methacrylate (SMA). At the end, multiblock copolymers (heptablock) were obtained by insertion of three blocks of SMA. All the polymerizations showed a living behavior with the resulting polymers exhibiting a narrow dispersity (Đ ≤ 1.5). The synthesized polymers were characterized by nuclear magnetic resonance (NMR), size exclusion chromatography (SEC) and rheological measurements. Furthermore, it was demonstrated that the insertion of hydrophobic segments into the multiblock copolymers increases considerably the viscosity of the associative electrolyte polymers.

Notes

Acknowledgements

Special thanks are expressed to M. C. Ricardo Mendoza-Carrizales, José G. Telles-Padilla and Dr. Tania Segura-Moctezuma for all their support in the fulfillment of the GPC trials. Also to Dr. Luis Ernesto Elizalde-Herrera for all his support provided on the NMR tests.

Supplementary material

289_2017_2071_MOESM1_ESM.docx (625 kb)
Supplementary material 1 (DOCX 625 kb)

References

  1. 1.
    Shaw KG, Leipold DPJ (1985) New cellulosic polymers for rheology control of latex paints. J Coat Technol 57:63–72Google Scholar
  2. 2.
    Evani S, Rose GD (1987) Water soluble hydrophobe association polymers. Polym Mater Sci Eng 57:477–481Google Scholar
  3. 3.
    Byham DE, Sheppard EW, Chen CSH (1980) Oil recovery process involving the injection of thickened wáter. US Patent 4 222 881Google Scholar
  4. 4.
    Stratton CA (1971) Oil recovery process using ethoxylated phenol-formaldehyde product. US Patent 3 583 486Google Scholar
  5. 5.
    Marquis D M, Kuehne L (1994) Enhanced oil recovery technique employing nonionic surfactants. US Patent 5 363 915Google Scholar
  6. 6.
    Schulz DN, Glass JE (1991) Polymers as rheology modifiers. ACS Symp Ser Am Chem Soc. doi: 10.1021/bk-1991-0462 Google Scholar
  7. 7.
    Pabon M, Corpart J (2004) Synthesis in inverse emulsion and associating behavior of hydrophobically modified polyacrylamides. J Appl Polym Sci 91:916–924. doi: 10.1002/app.13227 CrossRefGoogle Scholar
  8. 8.
    Volpert E, Selb J, Candau F, Green N (1998) Adsorption of hydrophobically associating polyacrylamides on clay. Langmuir 14:1870–1879. doi: 10.1021/la970358h CrossRefGoogle Scholar
  9. 9.
    Abdala AA, Tonelli AE, Khan SA (2003) Modulation of hydrophobic interactions in associative polymers using inclusion compounds and surfactants. Macromolecules 36:7833–7841. doi: 10.1021/ma034173v CrossRefGoogle Scholar
  10. 10.
    Jiménez-Regalado E, Selb J, Candau F (2000) Phase behavior and rheological properties of aqueous solutions containing mixtures of associating polymers. Macromolecules 33:8720–8730. doi: 10.1021/ma000579l CrossRefGoogle Scholar
  11. 11.
    Li Y, Kwak JCT (2003) Rheology and binding studies in aqueous systems of hydrophobically modified acrylamide and acrylic acid copolymers and surfactants. Colloids Surf A physicochem Eng Asp 225:169–180. doi: 10.1016/S0927-7757(03)00353-4 CrossRefGoogle Scholar
  12. 12.
    Ma J, Cui P, Zhao L, Huang R (2002) Synthesis and solution behavior of hydrophobic association water-soluble polymers containing arylalkyl group. Eur Polym J 38:1627–1633. doi: 10.1016/S0014-3057(02)00034-4 CrossRefGoogle Scholar
  13. 13.
    Hourdet D, L’Alloret F, Audebert R (1994) Reversible thermothickening of aqueous polymer solutions. Polymer 35:2624–2630. doi: 10.1016/0032-3861(94)90390-5 CrossRefGoogle Scholar
  14. 14.
    Matyjaszewski K (2009) Controlled/Living Radical Polymerization: Progress in RAFT, DT, NMP and OMRP. ACS Symp Ser Am Chem Soc. doi: 10.1021/bk-2009-1024.fw001 Google Scholar
  15. 15.
    Chassenieux C, Nicolai T, Benyahia L (2011) Rheology of associative polymer solutions. Curr Opin Colloid Interface Sci 16:18–26. doi: 10.1016/j.cocis.2010.07.007 CrossRefGoogle Scholar
  16. 16.
    English RJ, Gulati HS, Jenkins RD, Khan SA (1997) Solution rheology of a hydrophobically modified alkali-soluble associative polymer. J Rheol 41:427–444. doi: 10.1122/1.550807 CrossRefGoogle Scholar
  17. 17.
    Dai S, Tam KC, Jenkins RD, Bassett DR (2000) Light scattering of dilute hydrophobically modified alkali-soluble emulsion solutions: effects of hydrophobicity and spacer length of macromonomer. Macromolecules 33:7021–7028. doi: 10.1021/ma000528o CrossRefGoogle Scholar
  18. 18.
    Yao J, Ravi P, Tam KC, Gan LH (2004) Association behavior of poly(methyl methacrylate-block-methacrylic acid) in aqueous medium. Langmuir 20:2157–2163. doi: 10.1021/la0355343 CrossRefGoogle Scholar
  19. 19.
    Tsitsilianis C, Gotzamanis G, Iatridi Z (2012) Design of “smart” segmented polymers by incorporating random copolymers as building blocks. Eur Polymer J 47:497–510. doi: 10.1016/j.eurpolymj.2010.10.005 CrossRefGoogle Scholar
  20. 20.
    Popescu MT, Athanasoulias I, Tsitsilianis C, Hadjiantoniou NA, Patrickios CS (2010) Reversible hydrogels from amphiphilic polyelectrolyte model multiblock copolymers: the importance of macromolecular topology. Soft Matter 6:5417–5424. doi: 10.1039/C0SM00489H CrossRefGoogle Scholar
  21. 21.
    Jenkins AD, Jones RG, Moad G (2010) Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl Chem 82:483–491. doi: 10.1351/PAC-REP-08-04-03 Google Scholar
  22. 22.
    Hawker CJ (1994) Molecular weight control by a “living” free-radical polymerization process. J Am Chem Soc 116:11185–11186. doi: 10.1021/ja00103a055 CrossRefGoogle Scholar
  23. 23.
    Tebben L, Studer A (2011) Nitroxides: applications in synthesis and in polymer chemistry. Angew Chem Int Ed 50:5034–5068. doi: 10.1002/anie.201002547 CrossRefGoogle Scholar
  24. 24.
    Lessard BH, Marić M (2008) Nitroxide-mediated synthesis of poly(poly(ethylene glycol) acrylate) (PPEGA) comb-like homopolymers and block copolymers. Macromolecules 41:7870–7880. doi: 10.1021/ma800603a CrossRefGoogle Scholar
  25. 25.
    Payne KA, Nesvadba P, Debling J, Cunningham MF, Hutchinson RA (2015) Nitroxide-mediated polymerization at elevated temperatures. ACS Macro Lett 4:280–283. doi: 10.1021/acsmacrolett.5b00054 CrossRefGoogle Scholar
  26. 26.
    Burguiere C, Chassenieux C, Charleux B (2003) Characterization of aqueous micellar solutions of amphiphilic block copolymers of poly(acrylic acid) and polystyrene prepared via ATRP. Toward the control of the number of particles in emulsion polymerization. Polymer 44:509–518. doi: 10.1016/S0032-3861(02)00811-X CrossRefGoogle Scholar
  27. 27.
    Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039. doi: 10.1021/ma3001719 CrossRefGoogle Scholar
  28. 28.
    Burdyńska J, Cho HY, Mueller L, Matyjaszewski K (2010) Synthesis of star polymers using ARGET ATRP. Macromolecules 43:9227–9229. doi: 10.1021/ma101971z CrossRefGoogle Scholar
  29. 29.
    Moad G, Chong YK, Postma A, Rizzardo E, Thang SH (2005) Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46:8458–8468. doi: 10.1016/j.polymer.2004.12.061 CrossRefGoogle Scholar
  30. 30.
    Lowe AB, McCormick CL (2007) Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32:283–351. doi: 10.1016/j.progpolymsci.2006.11.003 CrossRefGoogle Scholar
  31. 31.
    Zhang W, D’Agosto F, Dugas P, Rieger J, Charleux B (2013) RAFT-mediated one-pot aqueous emulsion polymerization of methyl methacrylate in presence of poly(methacrylic acid-co-poly(ethylene oxide) methacrylate) trithiocarbonate macromolecular chain transfer agent. Polymer 54:2011–2019. doi: 10.1016/j.polymer.2012.12.028 CrossRefGoogle Scholar
  32. 32.
    Derry MJ, Fielding LA, Armes SP (2016) Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog Polym Sci 52:1–18. doi: 10.1016/j.progpolymsci.2015.10.002 CrossRefGoogle Scholar
  33. 33.
    Sigma-Aldrich, Materials, Science (2012) Controlled Radical Polymerization Guide: ATRP, RAFT, NMP https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Brochure/1/controlled-radical-polymerization-guide.pdf. Accesed 28 Feb 2017
  34. 34.
    Moad G, Rizardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41:1133–1142. doi: 10.1021/ar800075n CrossRefGoogle Scholar
  35. 35.
    Chaduc I, Girod M, Antoine R, Charleux B, D’Agosto F, Lansalot M (2012) Batch emulsion polymerization mediated by poly(methacrylic acid) MacroRAFT agents: one-pot synthesis of self-stabilized particles. Macromolecules 45:5881–5893. doi: 10.1021/ma300875y CrossRefGoogle Scholar
  36. 36.
    Pelet JM, Putnam D (2009) High molecular weight poly(methacrylic acid) with narrow polydispersity by RAFT polymerization. Macromolecules 42:1494–1499. doi: 10.1021/ma801433g CrossRefGoogle Scholar
  37. 37.
    Relógio P, Charreyre M, Farinha JPS, Martinho JMG, Pichot C (2004) Well-defined polymer precursors synthesized by RAFT polymerization of N,N-dimethylacrylamide/N-acryloxysuccinimide: random and block copolymers. Polymer 45:8639–8649. doi: 10.1016/j.polymer.2004.10.056 CrossRefGoogle Scholar
  38. 38.
    Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756. doi: 10.1021/ma020362m CrossRefGoogle Scholar
  39. 39.
    Chaduc I, Lansalot M, D’Agosto F, Charleux B (2012) RAFT polymerization of methacrylic acid in water. Macromolecules 45:1241–1247. doi: 10.1021/ma2023815 CrossRefGoogle Scholar
  40. 40.
    Couvreur L, Lefay C, Belleney J, Charleux B, Guerret O, Magnet S (2003) First nitroxide-mediated controlled free-radical polymerization of acrylic acid. Macromolecules 36:8260–8267. doi: 10.1021/ma035043p CrossRefGoogle Scholar
  41. 41.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  42. 42.
    Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21:258–262. doi: 10.1016/0032-3861(80)90266-9 CrossRefGoogle Scholar
  43. 43.
    De Gennes PG (1978) Scaling laws for incompatible polymer solutions. J Polym Sci Part B Polym Phys Ed 16:1883–1885. doi: 10.1002/pol.1978.180161016 CrossRefGoogle Scholar
  44. 44.
    Jiménez Regalado E, Selb J, Candau F (1999) Viscoelastic behavior of semidilute solutions of multisticker polymer chains. Macromolecules 32:8580–8588. doi: 10.1021/ma990999e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sergio Díaz-Silvestre
    • 1
  • Enrique Saldívar-Guerra
    • 1
  • Claudia Rivera-Vallejo
    • 1
  • Claude St Thomas
    • 2
  • Judith Cabello-Romero
    • 1
  • Ramiro Guerrero-Santos
    • 1
  • Enrique Jiménez-Regalado
    • 1
  1. 1.Centro de Investigación en Química Aplicada (CIQA)SaltilloMexico
  2. 2.CONACYT-Centro de Investigación en Química Aplicada (CIQA)SaltilloMexico

Personalised recommendations