Skip to main content

Advertisement

Log in

Post-electrospinning thermal treatments on poly(4-methyl-1-pentene) nanofiber membranes for improved mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, we fabricated bead-free isotactic poly(4-methyl-1-pentene) (PMP) nanofiber membranes and characterized their thermo-mechanical properties. PMP nanofiber membranes were electrospun and heat-treated at 180 and 220 °C, and thermally treated under load. The report investigates the effect of thermal treatments on the morphology, degree of crystallinity and mechanical properties, improving the mechanical properties of PMP nanofibers. Prepared nanofibers were investigated by SEM, DSC, XRD and mechanical properties. The mechanical properties demonstrate a tensile strength, an elongation (%) and a Young’s modulus of the nanofiber membranes. The DSC and WAXD analysis shows an increase of degree of crystallinity with thermal treatment. Thermally treated nanofibers under load demonstrate 4.1 times higher tensile strength and 14.1 times higher Young’s modulus than PMP fibrous membrane. Thermally treated nanofibers under load at 200 °C did not retain their structure and fuse with neighboring fibers, because it almost reached the melting temperature of (230 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee Y, Kim B-S, Hong JH, Park S, Kim H, Kim I-S (2012) Enhanced mechanical properties and pre-tension effects of polyurethane (PU) nanofiber filaments prepared by electrospinning and dry twisting. J Polym Res 19(2):1–5

    Article  Google Scholar 

  2. Yin C, Jatoi A, Bang H, Gopiraman M, Kim I-S (2016) Fabrication of silk fibroin based three dimensional scaffolds for tissue engineering. Fibers Poly 17(8):1140–1145

    Article  CAS  Google Scholar 

  3. Lee H, Koo JM, Sohn D, Kim I-S, Im SS (2016) High thermal stability and high tensile strength terpolyester nanofibers containing biobased monomer: fabrication and characterization. RSC Adv 6(46):40383–40388

    Article  CAS  Google Scholar 

  4. Lee H, Kim M, Sohn D, Kim SH, Oh S-G, Im SS, Kim IS (2017) Electrospun tungsten trioxide nanofibers decorated with palladium oxide nanoparticles exhibiting enhanced photocatalytic activity. RSC Adv 7(10):6108–6113

    Article  CAS  Google Scholar 

  5. Khatri Z, Jatoi AW, Ahmed F, Kim I-S (2016) Cell adhesion behavior of poly (ε-caprolactone)/poly (l-lactic acid) nanofibers scaffold. Mater Lett 171:178–181

    Article  CAS  Google Scholar 

  6. Ke M, Wahab JA, Hyunsik B, Song K-H, Lee JS, Gopiraman M, Kim IS (2016) Allantoin-loaded porous silica nanoparticles/polycaprolactone nanofiber composites: fabrication, characterization, and drug release properties. RSC Adv 6(6):4593–4600

    Article  CAS  Google Scholar 

  7. Gopiraman M, Jatoi AW, Hiromichi S, Yamaguchi K, Jeon H-Y, Chung I-M, Soo KI (2016) Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohyd Polym 149(20):51–59

    Article  CAS  Google Scholar 

  8. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O 2 batteries. Energy Environ Sci 4(8):2952–2958

    Article  CAS  Google Scholar 

  9. Lee H, Phan D-N, Kim M, Sohn D, Oh S-G, Kim S, Kim I (2016) The chemical deposition method for the decoration of palladium particles on carbon nanofibers with rapid conductivity changes. Nanomaterials 6(12):226–235

    Article  Google Scholar 

  10. Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623

    Article  CAS  Google Scholar 

  11. Kizildag N, Ucar N, Karacan I, Onen A, Demirsoy N (2014) The effect of the dissolution process and the polyaniline content on the properties of polyacrylonitrile–polyaniline composite nanoweb. J Ind Text 45(6):1548–1570

    Article  Google Scholar 

  12. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  13. Lee H, Nagaishi T, Phan D-N, Kim M, Zhang K-Q, Wei K, Kim IS (2017) Effect of graphene incorporation in carbon nanofiber decorated with TiO2 for photoanode applications. RSC Adv 7(11):6574–6582

    Article  CAS  Google Scholar 

  14. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  15. Lee H, Watanabe K, Kim M, Gopiraman M, Song K-H, Lee JS, Kim IS (2016) Handspinning enabled highly concentrated carbon nanotubes with controlled orientation in nanofibers. Sci Rep 6:37590

    Article  CAS  Google Scholar 

  16. W-x Zhang, Y-z Wang, C-f Sun (2007) Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res 14(6):467–474

    Article  Google Scholar 

  17. Saligheh O, Forouharshad M, Arasteh R, Eslami-Farsani R, Khajavi R, Roudbari BY (2013) The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers. J Polym Res 20(2):1–6

    Article  CAS  Google Scholar 

  18. He B, Tian L, Li J, Pan Z (2013) Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers Poly 14(3):405–408

    Article  CAS  Google Scholar 

  19. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70(5):703–718

    Article  CAS  Google Scholar 

  20. Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospun multiwalled nanotube/poly (methyl methacrylate) nanofibers. Adv Mater 19(9):1228–1233

    Article  CAS  Google Scholar 

  21. Sun W, Cai Q, Li P, Deng X, Wei Y, Xu M, Yang X (2010) Post-draw PAN–PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite. Dental Mat 26(9):873–880

    Article  CAS  Google Scholar 

  22. You Y, Lee SW, Lee SJ, Park WH (2006) Thermal interfiber bonding of electrospun poly (l-lactic acid) nanofibers. Mater Lett 60(11):1331–1333

    Article  CAS  Google Scholar 

  23. Tsai H, Ciou Y, Hu C, Lee K, Yu D, Lai J (2005) Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes. J Membr Sci 255(1):33–47

    Article  CAS  Google Scholar 

  24. Hou X, Yang X, Zhang L, Waclawik E, Wu S (2010) Stretching-induced crystallinity and orientation to improve the mechanical properties of electrospun PAN nanocomposites. Mater Des 31(4):1726–1730

    Article  CAS  Google Scholar 

  25. Griffith JH, Rånby B (1960) Dilatometric measurements on poly (4-methyl-1-pentene) glass and melt transition temperatures, crystallization rates, and unusual density behavior. J Poly Sci 44(144):369–381

    Article  CAS  Google Scholar 

  26. Lee K-H, Givens S, Chase DB, Rabolt JF (2006) Electrostatic polymer processing of isotactic poly (4-methyl-1-pentene) fibrous membrane. Polymer 47(23):8013–8018

    Article  CAS  Google Scholar 

  27. Lee K-H, Givens SR, Snively CM, Chase B, Rabolt JF (2008) Crystallization behavior of electrospun PB/PMP blend fibrous membranes. Macromolecules 41(9):3144–3148

    Article  CAS  Google Scholar 

  28. Fong H, Chun I, Reneker D (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592

    Article  CAS  Google Scholar 

  29. Bryant GM (1967) Fibers from crystalline hydrocarbon polymers1. Text Res J 37(7):552–563

    Article  CAS  Google Scholar 

  30. Hayes HJ, McCarthy TJ (1998) Maleation of poly (4-methyl-1-pentene) using supercritical carbon dioxide. Macromolecules 31(15):4813–4819

    Article  CAS  Google Scholar 

  31. Jalili R, Morshed M, Ravandi SAH (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101(6):4350–4357

    Article  CAS  Google Scholar 

  32. Esrafilzadeh D, Jalili R, Morshed M (2008) Crystalline order and mechanical properties of as-electrospun and post-treated bundles of uniaxially aligned polyacrylonitrile nanofiber. J Appl Polym Sci 110(5):3014–3022

    Article  CAS  Google Scholar 

  33. Charlet G, Delmas G (1984) Effect of solvent on the polymorphism of poly (4-methylpentene-1): 2. crystallization in semi-dilute solutions. Polymer 25(11):1619–1625

    Article  CAS  Google Scholar 

  34. De Rosa C (2003) Crystal structure of form II of isotactic poly (4-methyl-1-pentene). Macromolecules 36(16):6087–6094

    Article  Google Scholar 

  35. Miyoshi T, Pascui O, Reichert D (2004) Large-amplitude motions of form III of isotactic poly (4-methyl-1-pentene) crystallites prior to crystal-crystal transformation. Macromolecules 37(17):6653–6656

    Article  CAS  Google Scholar 

  36. Chen S, Jin J, Zhang J (2010) Non-isothermal crystallization behaviors of poly (4-methyl-pentene-1). J Therm Anal Calorim 103(1):229–236

    Article  Google Scholar 

  37. Aharoni SM, Charlet G, Delmas G (1981) Investigation of solutions and gels of poly (4-methyl-1-pentene) in cyclohexane and decalin by viscosimetry, calorimetry, and X-ray diffraction. A new crystalline form of poly (4-methyl-1-pentane) from gels. Macromolecules 14(5):1390–1394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research project was supported by Wataya Co., Ltd., Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, J.A., Lee, H., Wei, K. et al. Post-electrospinning thermal treatments on poly(4-methyl-1-pentene) nanofiber membranes for improved mechanical properties. Polym. Bull. 74, 5221–5230 (2017). https://doi.org/10.1007/s00289-017-2004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2004-4

Keywords

Navigation