Skip to main content

Double stimuli responsive mixed aggregates from poly(acrylic acid)-block-poly(ε-caprolactone)-block-poly(acrylic acid) and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers

Abstract

Well defined ABA triblock copolymer comprising a biodegradable poly(ε-caprolactone) (PCL) middle block and two pH responsive poly(acrylic acid) (PAA) outer blocks was synthesized by atom transfer radical polymerization of tert-butyl acrylate, initiated by PCL-based macroinitiator, followed by selective hydrolysis of the poly(tert-butyl acrylate) blocks. The cooperative self-assembly of the synthesized poly(acrylic acid)-block-poly(ε-caprolactone)-block-poly(acrylic acid) (PAA22PCL26PAA22) copolymer with a temperature-responsive poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO26PPO40PEO26, Pluronic P85) triblock copolymer at different compositions in aqueous media was investigated. Based on experimental data, copolymer properties and composition, formation of nano-sized aggregates comprising a mixed PCL/PPO core and a mixed PEO/PAA corona is suggested. The binary mixture of PAA22PCL26PAA22:PEO26PPO40PEO26 copolymers at molar ratio 3:1 favors the formation of mixed aggregates only, while at higher PEO26PPO40PEO26 content the aggregates coexist with pure PEO26PPO40PEO26 micelles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    CAS  Article  Google Scholar 

  2. Hamley IW (2005) Applications. In: Hamley IW (ed) Block copolymers in solution: fundamentals and applications. John Wiley, Chichester, pp 241–283

    Chapter  Google Scholar 

  3. Kabanov AV, Batrakova EV, Alakhov VYu (2002) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212

    CAS  Article  Google Scholar 

  4. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    CAS  Article  Google Scholar 

  5. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    CAS  Article  Google Scholar 

  6. Naik S, Ray J, Savin D (2011) Temperature- and pH-responsive self-assembly of poly(propylene oxide)-b-poly(lysine) block copolymers in aqueous solution. Langmuir 27:7231–7240

    CAS  Article  Google Scholar 

  7. Chang C, Wei H, Li Q, Yang B, Chen N, Zhou J-P, Zhang X-Z, Zhuo R-X (2011) Construction of mixed micelle with cross-linked core and dual responsive shells. Polym Chem 2:923–930

    CAS  Article  Google Scholar 

  8. Borovinskii A, Khokhlov A (1998) Micelle formation in the dilute solution mixtures of block-copolymers. Macromolecules 31:7636–7640

    CAS  Article  Google Scholar 

  9. Sens P, Marques CM, Joanny J-F (1996) Mixed micelles in a bidisperse solution of diblock copolymers. Macromolecules 29:4880–4890

    CAS  Article  Google Scholar 

  10. Honda C, Yamamoto K, Nose T (1996) Comicellization of binary mixtures of block copolymers with different block lengths in a selective solvent. Polymer 37:1975–1984

    CAS  Article  Google Scholar 

  11. Konak C, Helmstedt M (2003) Comicellization of diblock and triblock copolymers in selective solvents. Macromolecules 36:4603–4608

    CAS  Article  Google Scholar 

  12. Fustin CA, Abetz V, Gohy JF (2005) Triblock terpolymer micelles: a personal outlook. Eur Phys J E 16:291–302

    CAS  Article  Google Scholar 

  13. Nakashima K, Bahadur P (2006) Aggregation of water-soluble block copolymers in aqueous solutions: recent trends. Adv Colloid Interface Sci 123–126:75–96

    Article  Google Scholar 

  14. Lai P-L, Hsu C-C, Liu T-H, Hong D-W, Chen L-H, Chen W-J, Chu I-M (2012) Mixed micelles from methoxy poly(ethylene glycol)–polylactide and methoxy poly(ethylene glycol)–poly(sebacic anhydride) copolymers as drug carriers. React Funct Polym 72:846–855

    CAS  Article  Google Scholar 

  15. Sliozberg Y, Strawhecker K, Andzelm J, Lenhart J (2001) Computational and experimental investigation of morphology in thermoplastic elastomer gels composed of AB/ABA blends in B-selective solvent. Soft Matter 7:7539–7551

    Article  Google Scholar 

  16. Kabanov AV, Batrakova EV, Melik-Nubarov NS, Fedoseev NA, Dorodnich TY, Alakhov VY, Chekhonin VP, Nazarova IR, Kabanov VA (1992) A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. J Control Release 22:141–157

    CAS  Article  Google Scholar 

  17. Oh K, Bronich T, Kabanov A (2004) Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J Control Release 94:411–422

    CAS  Article  Google Scholar 

  18. Chaibundit C, Ricardo N, Costa F, Yeates S, Booth C (2007) Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir 23:9229–9236

    CAS  Article  Google Scholar 

  19. Petrov P, Tsvetanov CB, Jerome R (2009) Stabilized mixed micelles with a temperature-responsive core and a functional shell. J Phys Chem B 113:527–7533

    Article  Google Scholar 

  20. Hassanzadeh S, Khoee S, Farrokhi V, Mahdavi M, Foroumadi A (2014) Mixed micellar nanoparticles based on PCL-PEG-PPO-PEG-PCL pentablocks. J Polym Res 21:508–520

    Article  Google Scholar 

  21. Djurdjic B, Dimchevska S, Geskovski N, Petrusevska M, Gancheva V, Georgiev G, Petrov P, Goracinova K (2015) Synthesis and self-assembly of amphiphilic poly(acrylic acid)–poly(ε-caprolactone)–poly(acrylic acid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin. J Biomater Appl 29:867–881

    CAS  Article  Google Scholar 

  22. Mendrek B, Trzebicka B (2009) Synthesis and characterization of well-defined poly(tert-butyl acrylate) star polymers. Eur Polym J 45:1979–1993

    CAS  Article  Google Scholar 

  23. de Matos M, Puga A, Alvarez-Lorenzo C, Concheiro A, Braga M, de Sousa H (2015) Osteogenic poly(e-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. Int J Pharm 479:11–22

    Article  Google Scholar 

  24. Petrov P, Yoncheva K, Mokreva P, Konstantinov S, Irache JM, Muller AHE (2013) Poly(ethylene oxide)-block-poly(n-butyl acrylate)-block-poly(acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties. Soft Matter 9:8745–8753

    CAS  Article  Google Scholar 

  25. Knop K, Hoogenboom R, Fischer D, Schubert U (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308

    CAS  Article  Google Scholar 

  26. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions—thermodynamics of copolymer association. Macromolecules 27:2414–2425

    CAS  Article  Google Scholar 

  27. l’Abee RMA, Goossens JGP, van Duin M (2007) Thermoplastic vulcanizates by reaction-induced phase separation of a miscible poly(ϵ-caprolactone)/epoxy system. Rubber Chem Technol 80:311–323

    Article  Google Scholar 

  28. l’Abee RMA, Goossens JGP, van Duin M (2008) Thermoplastic vulcanizates obtained by reaction-induced phase separation: interplay between phase separation dynamics, final morphology and mechanical properties. Polymer 49:2288–2297

    Article  Google Scholar 

  29. Yoncheva K, Calleja P, Agüeros M, Petrov P, Miladinova I, Tsvetanov CB, Irache JM (2012) Stabilized micelles as delivery vehicles for paclitaxel. Int J Prarm 436:258–264

    CAS  Article  Google Scholar 

  30. Yoncheva K, Kamenova K, Perperieva T, Hadjimitova V, Donchev P, Kaloyanov K, Konstantinov S, Kondeva-Burdina M, Tzankova V, Petrov P (2015) Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin. Int J Pharm 490:298–307

    CAS  Article  Google Scholar 

  31. Kowalczuk A, Stoyanova E, Mitova V, Shestakova P, Momekov G, Momekova D, Koseva N (2011) Star-shaped nano-conjugates of cisplatin with high drug payload. Int J Pharm 404:220–230

    CAS  Article  Google Scholar 

  32. Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Controll Release 164:138–144

    CAS  Article  Google Scholar 

Download references

Acknowledgments

A scientific cooperation agreement between the Bulgarian Academy of Sciences and the Polish Academy of Sciences made this work possible. The financial support of European Union (POLINNOVA project, Grant Agreement No 316086) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Petrov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamenova, K., Trzebicka, B., Momekova, D. et al. Double stimuli responsive mixed aggregates from poly(acrylic acid)-block-poly(ε-caprolactone)-block-poly(acrylic acid) and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers. Polym. Bull. 74, 707–720 (2017). https://doi.org/10.1007/s00289-016-1741-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1741-0

Keywords

  • Amphiphilic copolymers
  • Double stimuli responsive aggregates
  • ATRP