Skip to main content
Log in

Structure of a self-assembled network made of polymeric worm-like micelles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

A Commentary to this article was published on 22 April 2017

An Erratum to this article was published on 07 September 2016

Abstract

The self-assembly of polymeric worm-like micelles in water was studied by rheology, light scattering and small angle neutron scattering. The polymer was synthesized by randomly grafting pendant quaternized alkylamine moieties to a polystyrene chain. The rheological properties of the gels evolve greatly over time: the elastic modulus G′ increases up to a maximum and then decreases. It is possible to obtain a kinetic master curve of evolution of the G′ at different temperatures. Structural measurements show the presence of heterogeneities that disappear slowly in time or when the samples are heated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Walker LM (2001) Rheology and structure of worm-like micelles. Curr Opin Colloid Interface Sci 6:451–456. doi:10.1016/S1359-0294(01)00116-9

    Article  CAS  Google Scholar 

  2. Candau SJ, Oda R (2001) Linear viscoelasticity of salt-free wormlike micellar solutions. Colloids Surf A 183:5–14. doi:10.1016/S0927-7757(01)00535-0

    Article  Google Scholar 

  3. Yang J (2002) Viscoelastic wormlike micelles and their applications. Curr Opin Colloid Interface Sci 7:276–281. doi:10.1016/S1359-0294(02)00071-7

    Article  CAS  Google Scholar 

  4. Hu Y, Han J, Ge L, Guo R (2015) Impact of alkyl chain length on the transition of hexagonal liquid crystal-wormlike micelle-gel in ionic liquid-type surfactant aqueous solutions without any additive. Langmuir 31:12618–12627. doi:10.1021/acs.langmuir.5b03382

    Article  CAS  Google Scholar 

  5. Bauri K, Narayanan A, Haldar U, De P (2015) Polymerization-induced self-assembly driving chiral nanostructured materials. Polym Chem 6:6152–6162. doi:10.1039/C5PY00919G

    Article  CAS  Google Scholar 

  6. Haldar U, Bauri K, Li R, Faust R, De P (2015) Polyisobutylene-based pH-responsive self-healing polymeric gels. ACS Appl Mater Interfaces 7:8779–8788. doi:10.1021/acsami.5b01272

    Article  CAS  Google Scholar 

  7. Varade D, Aramaki K, Stubenrauch C (2008) Phase diagrams of water-alkyltrimethylammonium bromide systems. Colloids Surf A Colloids 315:205–209. doi:10.1016/j.colsurfa.2007.07.031

    Article  CAS  Google Scholar 

  8. Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 18:3797–3803. doi:10.1021/la0115583

    Article  CAS  Google Scholar 

  9. Zhao Y, Haward SJ, Shen AQ (2015) Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt. J Rheol 59:1229–1259. doi:10.1122/1.4928454

    Article  CAS  Google Scholar 

  10. Oikonomou E, Bokias G, Kallitsis JK, Iliopoulos I (2011) Formation of hybrid wormlike micelles upon mixing cetyl trimethylammonium bromide with poly(methyl methacrylate-co-sodium styrene sulfonate) copolymers in aqueous solution. Langmuir 27:5054–5061. doi:10.1021/la200017j

    Article  CAS  Google Scholar 

  11. Menger FM, Littau CA (1991) Gemini-surfactants: synthesis and properties. J Am Chem Soc 113:1451–1452. doi:10.1021/ja00004a077

    Article  CAS  Google Scholar 

  12. Zana R, Talmon Y (1993) Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362:228–231. doi:10.1038/362228a0

    Article  CAS  Google Scholar 

  13. Alami E, Lévy H, Zana R, Skoulios A (1993) Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) surfactants. 2. Structure of the lyotropic mesophases in the presence of water. Langmuir 9:940–944. doi:10.1021/la00028a011

    Article  CAS  Google Scholar 

  14. Danino D, Talmon Y, Zana R (1995) Alkanediyl- α, ω -bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions. Langmuir 11:1448–1456. doi:10.1021/la00005a008

    Article  CAS  Google Scholar 

  15. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed 39:1906–1920. doi:10.1002/1521-3773

    Article  CAS  Google Scholar 

  16. Laschewsky A, Wattebled L, Arotçaréna M, Habib-Jiwan JL, Rakotoaly RH (2005) Synthesis and properties of cationic oligomeric surfactants. Langmuir 21:7170–7179. doi:10.1021/la050952o

    Article  CAS  Google Scholar 

  17. Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N (2009) Linear-to-branched micelles transition: a rheometry and diffusing wave spectroscopy (DWS) study. Langmuir 25:716–723. doi:10.1021/la802323x

    Article  CAS  Google Scholar 

  18. Hamid SM, Sherrington DC (1987) Novel quaternary ammonium amphiphilic (meth)acrylates: 1. Synthesis, melting and interfacial behaviour. Polymer 28:325–331. doi:10.1016/0032-3861(87)90426-5

    Article  CAS  Google Scholar 

  19. Guyot A, Tauer K (1994) Reactive surfactants in emulsion polymerization. Adv Poly Sci 111:43–65. doi:10.1007/BFb0024126

    Article  CAS  Google Scholar 

  20. Barbieri BW, Strauss UP (1985) Effect of alkyl group size on the cooperativity in conformational transitions of hydrophobic polyacids. Macromolecules 18:411–414. doi:10.1021/ma00145a019

    Article  CAS  Google Scholar 

  21. FitzGerald PA, Warr GG (2012) Structure of polymerizable surfactant micelles: insights from neutron scattering. Adv Colloid Interface Sci 179–182:14–21. doi:10.1016/j.cis.2012.06.003

    Article  Google Scholar 

  22. Cochin D, Candau F, Zana R (1993) Photopolymerization of micelle-forming monomers. 1. Characterization of the systems before and after polymerization. Macromolecules 26:5755–5764. doi:10.1021/ma00073a033

    Article  CAS  Google Scholar 

  23. Cochin D, Candau F, Zana R, Talmon Y (1992) Direct imaging of microstructures formed in aqueous solutions of polyamphiphiles. Macromolecules 25:4220–4223. doi:10.1021/ma00042a028

    Article  CAS  Google Scholar 

  24. Cochin D, Zana R, Candau F (1993) Photopolymerization of micelle-forming monomers. 2. Kinetic study and mechanism. Macromolecules 26:5765–5771. doi:10.1021/ma00073a034

    Article  CAS  Google Scholar 

  25. Limouzin-Morel C, Dutertre F, Moussa W, Gaillard C, Iliopoulos I, Bendejacq D, Nicolai T, Chassenieux C (2013) One and two dimensional self-assembly of comb-like amphiphilic copolyelectrolytes in aqueous solution. Soft Matter 9:8931–8937. doi:10.1039/c3sm51895g

    Article  CAS  Google Scholar 

  26. Dutertre F, Gaillard C, Chassenieux C, Nicolai T (2015) Branched wormlike micelles formed by self-assembled comblike amphiphilic copolyelectrolytes. Macromolecules 48:7604–7612. doi:10.1021/acs.macromol.5b01503

    Article  CAS  Google Scholar 

  27. Chassenieux C, Fundin J, Ducouret G, Iliopoulos I (2000) Amphiphilic copolymers of styrene with a surfactant-like comonomer: gel formation in aqueous solution. J Mol Struct 554:99–108. doi:10.1016/S0022-2860(00)00563-9

    Article  CAS  Google Scholar 

  28. Nakaya-Yaegashi K, Ramos L, Tabuteau H, Ligoure C (2008) Linear viscoelasticity of entangled wormlike micelles bridged by telechelic polymers: an experimental model for a double transient network. J Rheol 52:359–377. doi:10.1122/1.2828645

    Article  CAS  Google Scholar 

  29. Han Y, Feng Y, Sun H, Li Z, Han Y, Wang H (2011) Wormlike micelles formed by sodium erucate in the presence of a tetraalkylammonium hydrotrope. J Phys Chem 115:6893–6902. doi:10.1021/jp2004634

    Article  CAS  Google Scholar 

  30. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys: Condens Matter 2:6869–6892. doi:10.1088/0953-8984/2/33/001

    CAS  Google Scholar 

  31. Mark JE (2006) Physical properties of polymers handbook, 2nd edn. Springer, Cincinnati, pp 447–454

    Google Scholar 

Download references

Acknowledgments

The financial support of Région Pays de la Loire is acknowledged. LLB is thanked for providing access to the SANS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wissam Moussa.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00289-016-1799-8.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, W., Colombani, O., Benyahia, L. et al. Structure of a self-assembled network made of polymeric worm-like micelles. Polym. Bull. 73, 2689–2705 (2016). https://doi.org/10.1007/s00289-016-1615-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1615-5

Keywords

Navigation