Skip to main content

Characterization of hybrid copolymer containing thermosensitive and polypeptide blocks by thermogravimetric analysis

Abstract

Thermogravimetric studies of polypeptide-based hybrid copolymer (PNIPAm-g-PEG)-b-PLys in a flow of nitrogen were carried out at four rates of linear increase of the temperature. The kinetics and mechanism of the degradation process were evaluated from the TG data using the iso-conversional calculation procedure of Kissinger–Akahira–Sunose recommended by the ICTAC kinetics committee. It is very important to determine the most probable function of the mechanism, because the kinetic parameters of the process depend on its selection. In this respect, the iso-conversion calculation procedure turned out to be the most appropriate one. In the present work, the kinetic triplet (E, A and the shape of the most appropriate f(α)-function) of this process, as well as the kinetic parameters for the formation of the activated complex from the reagent, was calculated. All the calculations were performed using programs developed by us.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Tian R, Wen X, Hai D, Yong L (2011) Sheddable micelles based on disulfide-linked hybrid PEG-polypeptide copolymer for intracellular drug delivery. Polymer 52:3580–3586. doi:10.1016/j.polymer.2011.06.013

    Article  Google Scholar 

  2. Schmidt V, Soldi V (2006) Influence of polycaprolactone-triol addition on thermal stability of soy protein isolate based films. Polym Degrad Stab 91:3124–3130. doi:10.1016/j.polymdegradstab.2006.07.016

    CAS  Article  Google Scholar 

  3. Tze Ch, Younsoo B, Darin F, Glen K (2012) Biodegradable hybrid recombinant block copolymers for non-viral gene transfection. Int J Pharm 427:105–112. doi:10.1016/j.ijpharm.2011.09.035

    Article  Google Scholar 

  4. Georgieva V, Zvezdova D, Vlaev L (2013) Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim 111:763–771. doi:10.1007/s10973-012-2359-6

    CAS  Article  Google Scholar 

  5. Bigda R, Mianowski A (2006) Influence of heating rate on kinetic quantities of solid phase thermal decomposition. J Therm Anal Calorim 84(2):453–465. doi:10.1007/s10973-005-7378-0

    CAS  Article  Google Scholar 

  6. Yeganeh H, Lakouraj M, Jamshidi S (2005) Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(e-caprolactone) and poly(ethylene glycol). Eur Polym J 41:2370–2379. doi:10.1016/j.eurpolymj.2005.05.004

    CAS  Article  Google Scholar 

  7. Fr Signori, Chiellini F, Solaro R (2005) New self-assembling biocompatible–biodegradable amphiphilic block copolymers. Polymer 46:9642–9652. doi:10.1016/j.polymer.2005.07.071

    Article  Google Scholar 

  8. Tsai MC, Shih CM, Lue SJ (2013) Drug permeation behavior through thermo- and pH-responsive polycarbonate-g-poly(N-isopropylacrylamide-co-acrylic acid) composites. Polym Bull 70:1003–1017. doi:10.1007/s00289-012-0865-0

    CAS  Article  Google Scholar 

  9. Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim Acta 523:25–45. doi:10.1016/j.tca.2011.06.012

    CAS  Article  Google Scholar 

  10. Czech Zb, Kowalczyk A, Kabatc J, Swiderska J (2013) Thermal stability of poly(2-ethylhexyl acrylates) used as plasticizers for medical application. Polym Bull 70:1911–1918. doi:10.1007/s00289-012-0887-7

    CAS  Article  Google Scholar 

  11. Cekingen S, Saltan F, Yildirim Y, Akat H (2012) A novel HEMA-derived monomer and copolymers containing side-chain thiophene units: synthesis, characterization and thermal degradation kinetics. Thermochim Acta 546:87–93. doi:10.1016/j.tca.2012.07.027

    CAS  Article  Google Scholar 

  12. Turmanova S, Genieva S, Dimitrova A, Vlaev L (2008) Non-isothermal degradation kinetics of filled with rice husk ash polypropene composites. eXPRESS Polym Lett 2(2):133–146. doi:10.3144/expresspolymlett.2008.18

    Google Scholar 

  13. Vlaev L, Turmanova S, Genieva S (2009) Chapter 12. In: Donahue WS, Brandt JC (eds) Products and applications of pyrolyzed rice husks: structure, morphology, thermal, kinetics and physicomechanical characteristics, in pyrolysis: types, processes, and industrial sources and products. Nova Science Publishers, New York, pp 267–323

  14. Genieva S, Turmanova S, Vlaev L (2011) Chapter 13. In: Kalia K, Kaith G, Kaur S (eds) Utilization of rice husks and the products of its degradation as fillers of polymers in cellulose fibers, bio-, and nano-polymer composites. Part II: cellulosic fiber reinforced polymer composites. Springer AG, Germany, pp 345–376

  15. Ivanova E, Dimitrov I, Kozarova R, Turmanova S, Apostolova M (2013) Thermally sensitive polypeptide-based copolymer for DNA complexation into stable nanosized polyplexes. J Nanopart Res 15(1):1358. doi:10.1007/s11051-012-1358-7

    Article  Google Scholar 

  16. Atanassov A, Genieva S, Vlaev L (2010) Study of the thermooxidative degradation kinetics of tetrafluoroethylene-ethylene copolymer filled with rice husks ash. Polym-Plast Technol Eng 49:541–554. doi:10.1080/03602550903532224

    CAS  Article  Google Scholar 

  17. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81(2):253–262. doi:10.1016/j.jaap.2007.12.003

    CAS  Article  Google Scholar 

  18. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nat Lond 201:68–69. doi:10.1038/201068a0

    CAS  Article  Google Scholar 

  19. Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43. doi:10.1016/S0040-6031(03)00310-1

    CAS  Article  Google Scholar 

  20. Wanjun T, Cunxin W, Donghua C (2005) Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degrad Stabil 87:389–394. doi:10.1016/j.polymdegradstab.2004.08.006

    Article  Google Scholar 

  21. Boonchom B, Thongkam M (2010) Kinetics and thermodynamics of the formation of MnFeP4O12. J Chem Eng Data 55:211–216. doi:10.1021/je900310m

    CAS  Article  Google Scholar 

  22. Vyazovkin S (2006) Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim 83(1):45–51. doi:10.1007/s10973-005-7044-6

    Google Scholar 

  23. Genieva S, Vlaev L, Atanassov A (2010) Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim 99(2):551–561. doi:10.1007/s10973-009-0191-4

    CAS  Article  Google Scholar 

  24. Su T-T, Jiang H, Gong H (2008) Thermal stabilities and the thermal degradation kinetics of poly(ε-caprolactone). Polym Plast Technol Eng 47:398–403. doi:10.1080/03602550801897695

    CAS  Article  Google Scholar 

  25. Vyazovkin S, Burnham A, Criado J, Perez-Maqueda L, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi:10.1016/j.tca.2011.03.034

    CAS  Article  Google Scholar 

  26. Marian E, Tiţa B, Jurca T, Fulias A, Vicas L, Tiţa D (2012) Thermal behaviour of erythromycin-active substance and tablets Part 1: Kinetic study of the active substance under non-isothermal conditions. J Thermal Anal Calorim. doi:10.1007/s10973-012-2284-8

    Google Scholar 

  27. He W, Deng F, Liao G-X et al (2010) Kinetics of thermal degradation of poly(aryl ether) containing phthalazinone and life estimation. J Therm Anal Calorim 100:1055–1062. doi:10.1007/s10973-009-0515-4

    CAS  Article  Google Scholar 

  28. Kissinger HE (1957) Reaction kinetics in different thermal analysis. J Anal Chem 29:1702–1706

    CAS  Article  Google Scholar 

  29. Senum G, Yang R (1977) Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim 11:445–447. doi:10.1007/BF01903696

    Article  Google Scholar 

  30. Albano CL, Sciamanna ES, AqunoT, Martinez JJ (2000) Methodology to evaluate thermogravimetric data using computational techniques in the polymer field. In: European congress on computational methods in applied science and engineering, ECCOMAS 2000, Barcelona, Spain

  31. Georgieva V, Zvezdova D, Vlaev L (2012) Non-isothermal kinetics of thermal degradation of chitosan. 6: art. Chem Cent J 1(81):1–10. doi:10.1186/1752-153X-6-81

    Google Scholar 

  32. Georgieva V, Vlaev L, Gyurova K (2013) Non-isothermal degradation kinetics of CaCO3 from different origin. J Chem Art 872981:1–12

    Article  Google Scholar 

  33. Corders H (1968) The preexponential factors for solid-state thermal decomposition. J Phys Chem 72(6):2185–2189

    Article  Google Scholar 

  34. Singh LK, Mitra S (1989) Thermal investigation and stereochemical studies of some cyclic diamine complexes of nickel(II), zinc(II) and cadmium(II) in the solid state. part II. Thermochim Acta 138:285–301. doi:10.1016/0040-6031(89)87265-X

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevdalina Chr. Turmanova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ivanova, E.D., Georgieva, V.G., Chr. Turmanova, S. et al. Characterization of hybrid copolymer containing thermosensitive and polypeptide blocks by thermogravimetric analysis. Polym. Bull. 71, 167–179 (2014). https://doi.org/10.1007/s00289-013-1052-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1052-7

Keywords

  • Polypeptide-based hybrid copolymer
  • Thermal degradation
  • Non-isothermal kinetics
  • Kinetic triplet