Skip to main content
Log in

Kinetic effects of silica nanoparticles on thermal and radiation stability of polyolefins

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of γ-irradiation as the accelerated degradation procedure were analyzed for the evaluation of material stability. Low density polyethylene, polypropylene and ethylene–propylene terpolymer were studied in formulations with SiO2 nanoparticles (2 and 5 wt%) or as neat materials. High energy irradiation (up to 100 kGy) has revealed a faster increase in the absorption of carbonyl band in comparison with the corresponding change in hydroperoxide band. The three studied materials present increased oxidation rates as the received energy transferred from incidental rays is enhancing, because the thermal regime of degradation depends on the structural characteristics, namely initial number of tertiary carbon atoms and unsaturation level. The fate of hydroperoxides as oxidation initiators is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelwahab M, Agag T, Akelah A, Takeichi T (2012) Synthesis and characterization of styrene modified vinylester resin-clay nanocomposites. Polym Eng Sci 52:125–132. doi:10.1002/pen.22054

    Article  CAS  Google Scholar 

  2. Dintcheva NTz, La Mantia FP, Malatesta V (2011) Effect of different dispersing additives on the morphology and the properties of polyethylene-based nanocomposite films. eXPRESS Polym Lett 5:923–935. doi:10.3144/expresspolymlett.2011.90

    Article  CAS  Google Scholar 

  3. Tjong SC, Mai YW (2010) Physical properties and applications of polymer nanocomposites. Woodhead Publishing House, Cambridge

    Book  Google Scholar 

  4. Díez J, Barral L, Bellas R, Bouza R, López J, Marco C, Ellis G (2011) Microstructure, morphology and mechanical properties of styrene-butadiene rubber/organoclay nanocomposites. Polym Eng Sci 51:1720–1729. doi:10.1002/pen.21950

    Article  Google Scholar 

  5. Santamaría P, Eguiazábal JI, Nazábal J (2010) Structure and properties of polyethylene ionomer based nanocomposites. J Appl Polym Sci 116:2374–2383. doi:10.1002/app.31771

    Google Scholar 

  6. Gibson RF (2010) A review of recent research on mechanisms of multifunctional composite materials and structures. Comp Struct 92:2793–2810. doi:0.1016/j.compstruct.2010.05.003

    Article  Google Scholar 

  7. Manias E, Zhang JG, Huh JY, Manokruang K, Songtipya P, Jimenez-Gasco M (2009) Polyethylene nanocomposite heat-sealants with a versatile peelable character. Macromol Rapid Commun 30:17–23. doi:10.1002/marc.200800553

    Article  CAS  Google Scholar 

  8. Leszczyńska A, Njuguna J, Pielichowski K, Banerjeec JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22. doi:101016/j.tca.2006.1.003

    Article  Google Scholar 

  9. Zhang JG, Wilkie CA (2006) Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units. Polymer 47:5736–5743. doi:0.1016/j.polymer.2006.06.018

    Article  CAS  Google Scholar 

  10. Zaharescu T, Jipa S, Kappel W, Supaphol P (2006) The control of thermal and radiation stability of polypropylene containing calcium carbonate nanoparticles. Macromol Symp 242:319–324. doi:10.1002/masy.200651044

    Article  CAS  Google Scholar 

  11. Százdi L, Pozsgay A, Pukánszky B (2007) Factors and processes influencing the reinforcing effect of layered silicates in polymer composites. Eur Polym J 43:345–359. doi:10.1016/j.eurpolymj.2006.11.005

    Article  Google Scholar 

  12. Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250. doi:101016/j.polymdegradstab.2004.09.013

    Article  CAS  Google Scholar 

  13. Drozdov AD (2007) A model for thermal degradation of hybrid nanocomposites. Eur Polym J 43:1681–1690. doi:10.1016j.eurpolymj.2007.01.031

    Article  CAS  Google Scholar 

  14. Finegan IC, Tibbetts GG, Gibson RF (2003) Modeling and characterization of damping in carbon nanofiber/polypropylene composites. Comp Sci Technol 63:1629–1635. doi:10.1016/S0266-3538(03)00054-X

    Article  CAS  Google Scholar 

  15. Vladimirov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D (2006) Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Comp Sci Technol 66:2935–2944. doi:10.1016/j.compscitech

    Article  CAS  Google Scholar 

  16. Zaharescu T, Jipa S, Supaphol P (2010) Thermal stability of isotactic polypropylene modified with calcium carbonate nanoparticles. Polym Bull 64:783–790. doi:10.1007/S00289-009-0213-1

    Article  Google Scholar 

  17. Chatterjee A, Deopura BL (2006) Thermal stability of polypropylene/carbon nanofiber composite. J Appl Polym Sci 100:3574–3578. doi:10.1002/app.22864

    Article  CAS  Google Scholar 

  18. Richaud E, Colin X, Fayolle B, Audouin L, Verdu J (2008) Induction period in the low-temperature thermal oxidation of saturated hydrocarbons: example of polyethylene. Int J Chem Kin 40:769–777. doi:10.1002/kin.20347

    Article  CAS  Google Scholar 

  19. Jipa S, Zaharescu T, Setnescu R, Setnescu T, Brites MJS, Silva AMG, Marcelo-Curto MJ, Gigante B (1999) Chemiluminescence study of thermal and photostability of polyethylene. Polym Int 48:414–420. doi:10.1002/(SICI)1097-0126(199905)48:5<414::AID-PI155>3.0.CO;2-#

    Article  CAS  Google Scholar 

  20. Matisova-Rychla L, Rychlý J (2004) Thermal oxidation of nonstabilized and stabilized polymers and chemiluminescence. J Polym Sci 42:648–660. doi:10.1002/pola.10847

    CAS  Google Scholar 

  21. Zaharescu T, Giurginca M, Jipa S (1999) Radiochemical oxidation of ethylene–propylene elastomers in the presence of some phenolic antioxidants. Polym Degrad Stab 63:245–251. doi:10.106/S0141-3910(98)00100-1

    Article  CAS  Google Scholar 

  22. Kheliji N, Colin X, Audouin L, Verdu J (2005) A simplified approach of the lifetime prediction of PE in nuclear environments. Nucl Instrum Methods Phys Res B 236:88–94. doi:10.1061/j/nimb.2005.03.259

    Article  Google Scholar 

  23. Gillen KT, Clough RL (1991) Prediction long-term mechanical performances of polymer. In: Clegg DW, Collyer AA (eds) Irradiation effects on polymers. Elsevier, London, p 157

    Google Scholar 

  24. Richaud E, Farcas F, Fayolle B, Audouin L, Verdu J (2007) Hydroperoxide build-up in the thermal oxidation of polypropylene—A kinetic study. Polym Degrad Stab 92:118–124. doi:0.1016/j.polymdegradstab.2006.08.010

    Article  CAS  Google Scholar 

  25. Colin X, Monchy-Lerroy C, Audouin L, Verdu J (2007) Lifetime prediction of polyethylene in nuclear plants. Nucl Instrum Methods Phys Res B 265:251–255. doi:10.1061/j/nimb.2007.08.086

    Article  CAS  Google Scholar 

  26. Chien JCW, Jabloner H (1968) Polymer reactions. IV. Thermal decomposition of polypropylene hydroperoxides. J Polym Sci Part A1 Polym Chem 6:393–402. doi:10.1002/pol.1968.150060209

    Article  CAS  Google Scholar 

  27. Koutný M, Václavková T, Matisová-Rychlá L, Rychlý J (2008) Characterization of oxidation progress by chemiluminescence: a study of polyethylene with pro-oxidant additives. Polym Degrad Stab 93:1515–1519. doi:10.1016/j.polymdegradstab.2008.05.007

    Article  Google Scholar 

  28. Gugumus F (2002) Re-examination of the thermal oxidation reactions of polymers 3. Various reactions in polyethylene and polypropylene. Polym Degrad Stab 77:147–155. doi:101016/S0141-3910(02)00093-9

    Article  CAS  Google Scholar 

  29. Petrúj J, Marchal J (1980) Mechanism of ketone formation in the thermal oxidation and radilytic oxidation of low density polyethylene. Radiat Phys Chem 16:27–36. doi:10.1016/0146-5724(80)90110-7

    Google Scholar 

  30. Modesti M, Lorenzetti A, Bon D, Besco S (2006) Thermal behavior of compatibilized polypropylene nanocomposite: effect of processing conditions. Polym Degrad Stab 91:672–680. doi:10.1016/j.polymdegradstab.2005.05.018

    Article  CAS  Google Scholar 

  31. Mowery DM, Assink RA, Derzon DK, Klamo SB, Bernstein R, Clough RL (2007) Radiation oxidation of polypropylene: a solid-state 13C NMR study using selective isotopic labeling. Rad Phys Chem 76:864–878. doi:10.1016/j.radphyschem.2006.06.007

    Article  CAS  Google Scholar 

  32. Yang R, Liu Y, Yu J, Wang KH (2006) Thermal oxidation products and kinetics of polyethylene composites. Polym Degrad Stab 91:1651–1657. doi:10.1016/j.polymdegradstab2005.12.013

    Article  CAS  Google Scholar 

  33. Zaharescu T, Jipa S (2013) Application of chemiluminescence in polymer research. In: KF Arndt, MD Lechner (eds) Polymer solids and polymer melts, Springer, Berlin, Landolt-Börnstein Series, vol VIII/6 C2, pp 184–248

  34. Matisova-Rychlá L, Rychlý J, Slovák K (2003) Effect of the polymer type and experimental parameters on chemiluminescence curves of selected materials. Polym Degrad Stab 82:173–180. doi:10.1016/S0141-3910(03)00181-2

    Article  Google Scholar 

  35. Dorigato A, Pegoretti A, Frache A (2012) Thermal stability of high density polyethylene-fumed silica nanocomposites. J Therm Anal Calorim 109:863–873. doi:10.1007/s10973-012-2421-4

    Article  CAS  Google Scholar 

  36. Planes E, Chazeau L, Vivier G, Stuhldreier T (2010) Influence of silica fillers on the ageing by gamma radiation of EPDM nanocomposites. Comp Sci Tech 70:1530–1536. doi:10.1016/j.compscitech.2010.05.010

    Article  CAS  Google Scholar 

  37. Mrkić S, Galić K, Ivanković M, Hamin S, Ciković N (2006) Gas transport and thermal characterization of mono- and di-polyethylene films used for food packaging. J Appl Polym Sci 99:1590–1599. doi:10.1002/app.22513

    Article  Google Scholar 

  38. Dorigato A, Pegoretti A, Frache A (2012) Thermal stability of high density polyethylene-fumed silica nanocomposites. J Therm Anal Calorim 109:863–873. doi:10.1007/s10973-012-2421-4

    Article  CAS  Google Scholar 

  39. Rivaton A, Cambon S, Gardette J-L (2005) Radiochemical ageing of EPDM elastomers. 2. Identification and quantification of chemical changes in EPDM and EPR film γ-irradiated under oxygen atmosphere. Nucl Instrum Methods Phys Res B 227:343–356. doi:10101/j.nimb.2004.09.008

    Article  CAS  Google Scholar 

  40. Roy M, Nelson JK, MacCrone RK, Chadler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposites dielectrics—The role of the interface. IEEE Trans Diel Electr Insul 12:629–643. doi:10.1109/TDEI.2005.1511089

    Article  CAS  Google Scholar 

  41. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Diel Electr Insul 12:914–928. doi:10.1109/TDEI.2005.1522186

    Article  CAS  Google Scholar 

  42. Tanaka T, Montanari GC, Műhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans Diel Electr Insul 11:763–784. doi:10.1109/TDEI.2004.1349782

    Article  CAS  Google Scholar 

  43. Zaharescu T, Kaci M, Setnescu R, Jipa S, Touati N (2006) Thermal stability evaluation of irradiated polypropylene protected with grafted amine. Polym Bull 56:405–412. doi:10.1007/s00289-006-0505-7

    Article  CAS  Google Scholar 

  44. Shyichuk AV, White JR, Craig IH, Syrotynska ID (2005) Comparison of UV-degradation depth-profile in polyethylene, polypropylene, and an ethylene-propylene copolymer. Polym Degrad Stab 88:415–419. doi:10.106/j.polymdegradstab.2004.12.006

    Article  CAS  Google Scholar 

  45. Gugumus F (1989) Some aspects of polyethylene photooxidation. Makromol Chem Macromol Symp 27:25–84. doi:10.1002/masy.19890270104

    Article  CAS  Google Scholar 

  46. Billingham NC, Then ETH, Gijsman PJ (1991) Chemiluminescence from peroxides in polypropylene. Part I. Relation of luminescence to peroxide content. Polym Degrad Stab 34:263–277. doi:10.106/0141-3910(91)90122-8

    Article  CAS  Google Scholar 

  47. Zlatkevich L (2004) On the kinetic order of decomposition of polymeric hydroperoxides. Polym Degrad Stab 83:369–371. doi:0.1016/j.polymdegradstab.2003.09.006

    Article  CAS  Google Scholar 

  48. Billingham NC, Grigg MN (2004) The kinetic order of decomposition of polymer peroxides assessed by chemiluminescence. Polym Degrad Stab 83:441–451. doi:10.1016/j.polymdegradstab2003.06.001

    Article  CAS  Google Scholar 

  49. Shlyapnikov YuA, Bogaevskaya TA, Kiryushkin SC, Monakhova TV (1979) Specific features of formation and properties of hydroperoxides of polyolefins. Eur Polym J 15:737–742. doi:10.1016/0014-3057(79)90024-7

    Article  CAS  Google Scholar 

  50. Zolotova NV, Denisov ET (1971) Mechanism of propagation and degeneration chain branching in the oxidation in the oxidation of polypropylene and polyethylene. J Polym Sci Part A1 Polym Chem 9:3311–3320. doi:10.1002/pol.1971.150091117

    Article  CAS  Google Scholar 

  51. Richaud E, Farcas F, Fayolle B, Audouin L, Verdu J (2006) Hydroperoxide titration by DSC in thermal oxidized polypropylene. Polym Testing 25:829–838. doi:10.1016/j.polymertesting.2006.04.010

    Article  CAS  Google Scholar 

  52. Carlsson DJ, Čhmela S, Lacost J (1990) On the structure and yields of the first peroxyl radicals in γ-irradiated polyolefins. Macromolecules 23:4934–4938. doi:10.1021/ma00225a009

    Article  CAS  Google Scholar 

  53. Bernstein R et al (2007) Insights into oxidation mechanisms in gamma-irradiated polypropylene using selectiv isotopic labeling with analysis by SC/MS, NMR and FTIR. Nucl Instrum Methods Phys Res B 265:8–17. doi:10.1016/j/nimb.2007.08.100

    Article  CAS  Google Scholar 

  54. Memetea LT, Billingham NC, Then ETH (1995) Hydroperoxides in polyacrylonitrile and their role in carbon fiber formation. Polym Degrad Stab 47:189–201. doi:10.1016/0141-3910(94)00105-H

    Article  CAS  Google Scholar 

  55. Coquillat M, Verdu J, Colin X, Audouin L, Nevière R (2007) Thermal oxidation of polybutadiene. Part 2. Mechanism and kinetic schemes for additive-free non-crosslinked polybutadiene. Polym Degrad Stab 92:1334–1342. doi:10.1016/j.polymdegradstab.2007.03.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Zaharescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaharescu, T., Plesa, I. & Jipa, S. Kinetic effects of silica nanoparticles on thermal and radiation stability of polyolefins. Polym. Bull. 70, 2981–2994 (2013). https://doi.org/10.1007/s00289-013-1001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1001-5

Keywords

Navigation