Interactive Machine Learning (iML)

Zusammenfassung

Während Machine Learning (ML) in vielen Domänen sehr gut funktioniert, wie die Leistung selbstfahrender Autos zeigt, bergen vollautomatisierte ML-Methoden in komplexen Domänen die Gefahr der Modellierung von Artefakten. Ein Beispiel für eine komplexe Domäne ist die Biomedizin, wo wir mit hochdimensionalen, probabilistischen und unvollständigen Datenmengen konfrontiert sind. In solchen Problemstellungen kann es vorteilhaft sein, nicht auf menschliches Domänenwissen zu verzichten, sondern vielmehr menschliche Intelligenz und ML zu kombinieren.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Atzmüller M, Baumeister J, Puppe F (2006) Introspective Subgroup Analysis for Interactive Knowledge Refinement FLAIRS Nineteenth International Florida Artificial Intelligence Research Society Conference. AAIS press, pp 402–407

  2. 2.

    Brochu E, Freitas ND, Ghosh A (2007) Active Preference Learning with Discrete Choice Data. In: Platt JC, Koller D, Singer Y, Roweis ST (eds) Advances in Neural Information Processing Systems 20, NIPS 2007, pp 409–416

  3. 3.

    Fürnkranz J, Hüllermeier E, Cheng W, Park SH (2012) Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Machine Learning 89(1–2):123–156

    Article  MathSciNet  MATH  Google Scholar 

  4. 4.

    Holzinger A (2014) Trends in Interactive Knowledge Discovery for Personalized Medicine: Cognitive Science meets Machine Learning. IEEE Intell Inform Bull 15(1):6–14

    Google Scholar 

  5. 5.

    Hund M, Sturm W, Schreck T, Ullrich T, Keim D, Majnaric L, Holzinger A (2015) Analysis of Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo Y, Friston K, Aldo F, Hill S, Peng H (eds) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250. Springer, Heidelberg, pp 358–368

    Google Scholar 

  6. 6.

    Kieseberg P, Schantl J, Frühwirt P, Weippl E, Holzinger A (2015) Witnesses for the Doctor in the Loop. In: Guo Y, Friston K, Aldo F, Hill S, Peng H (eds) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250. Springer, Heidelberg, pp 369–378

    Google Scholar 

  7. 7.

    Littman ML (2015) Reinforcement learning improves behaviour from evaluative feedback. Nature 521(7553):445–451

    Article  Google Scholar 

  8. 8.

    Miettinen P (2014) Interactive Data Mining Considered Harmful (If Done Wrong). ACM SIGKDD Workshop on Interactive Data Exploration and Analytics, pp 85–87

  9. 9.

    Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

    Article  Google Scholar 

  10. 10.

    Müller E, Assent I, Krieger R, Jansen T, Seidl T (2008) Morpheus: Interactive Exploration of Subspace Clustering. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1089–1092

  11. 11.

    Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210–229

    Article  MathSciNet  Google Scholar 

  12. 12.

    Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34(4):273–286

    Article  Google Scholar 

  13. 13.

    Tran-Thanh L, Stein S, Rogers A, Jennings NR (2014) Efficient crowdsourcing of unknown experts using bounded multi-armed bandits. Artif Intell 214:89–111

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460

    Article  MathSciNet  Google Scholar 

  15. 15.

    Yue Y, Joachims T (2009) Interactively Optimizing Information Retrieval Systems as a Dueling Bandits Problem. Proceedings of the 26th Annual International Conference on Machine Learning (ICML), pp 1201–1208

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Holzinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holzinger, A. Interactive Machine Learning (iML). Informatik Spektrum 39, 64–68 (2016). https://doi.org/10.1007/s00287-015-0941-6

Download citation