Skip to main content
Log in

On the Lotka–Volterra competition system with dynamical resources and density-dependent diffusion

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we consider the following Lotka–Volterra competition system with dynamical resources and density-dependent diffusion

in a bounded smooth domain \(\Omega \subset {{\mathbb {R}}^2}\) with homogeneous Neumann boundary conditions, where the parameters \(\mu \), \(a_{i}\), \(b_{i}\), \( c_{i}\) (\(i=1,2\)) are positive constants, m(x) is the prey’s resource, and the dispersal rate function \(d_{i}(w)\) satisfies the the following hypothesis:

  • \(d_{i}(w)\in C^2([0,\infty ))\), \(d_{i}'(w)\le 0\) on \([0,\infty )\) and \(d(w)>0\).

When m(x) is constant, we show that the system (*) with has a unique global classical solution when the initial datum is in functional space \(W^{1,p}(\Omega )\) with \(p>2\). By constructing appropriate Lyapunov functionals and using LaSalle’s invariant principle, we further prove that the solution of (*) converges to the co-existence steady state exponentially or competitive exclusion steady state algebraically as time tends to infinity in different parameter regimes. Our results reveal that once the resource w has temporal dynamics, two competitors may coexist in the case of weak competition regardless of their dispersal rates and initial values no matter whether there is explicit dependence in dispersal or not. When the prey’s resource is spatially heterogeneous (i.e. m(x) is non-constant), we use numerical simulations to demonstrate that the striking phenomenon “slower diffuser always prevails” (cf. Dockery et al. in J Math Biol 37(1):61–83, 1998; Lou in J Differ Equ 223(2):400–426, 2006) fails to appear if the non-random dispersal strategy is employed by competing species (i.e. either \(d_1(w)\) or \(d_2(w)\) is non-constant) while it still holds true if both d(w) and \(d_2(w)\) are constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amann H (1989) Dynamic theory of quasilinear parabolic systems. III. Global existence. Math Z 202(2):219–250

    Article  MathSciNet  Google Scholar 

  • Amann H (1990) Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differ Integral Equ 3(1):13–75

    MathSciNet  MATH  Google Scholar 

  • Amann H (1993) Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math.. Teubner, Stuttgart, pp 9–126

  • Averill I, Lam K-Y, Lou Y (2017) The role of advection in a two-species competition model: a bifurcation approach, vol 245. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Bao XX, Wang Z-C (2013) Existence and stability of time periodic traveling waves for a periodic bistable Lotka–Volterra competition system. J Differ Equ 255(8):2402–2435

    Article  MathSciNet  Google Scholar 

  • Brown PN (1980) Decay to uniform states in ecological interactions. SIAM J Appl Math 38(1):22–37

    Article  MathSciNet  Google Scholar 

  • Cantrell RS, Cosner C (2004) Spatial ecology via reaction–diffusion equations. Wiley, New York

    Book  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2006) Movement toward better environments and the evolution of rapid diffusion. Math Biosci 204(2):199–214

    Article  MathSciNet  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2007) Advection-mediated coexistence of competing species. Proc R Soc Edinb A 137(3):497–518

    Article  MathSciNet  Google Scholar 

  • Chen X, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction–diffusion–advection model. J Math Biol 57(3):361–386

    Article  MathSciNet  Google Scholar 

  • Chen Q, Li F, Wang F (2016) The diffusive competition problem with a free boundary in heterogeneous time-periodic environment. J Math Anal Appl 433(2):1594–1613

    Article  MathSciNet  Google Scholar 

  • Cosner C (2014) Reaction–diffusion–advection models for the effects and evolution of dispersal. Discrete Contin Dyn Syst 34(5):1701–1745

    Article  MathSciNet  Google Scholar 

  • Dockery J, Hutson V, Mischaikow K, Pernarowski M (1998) The evolution of slow dispersal rates: a reaction diffusion model. J Math Biol 37(1):61–83

    Article  MathSciNet  Google Scholar 

  • Fu X, Tang L-H, Liu C, Huang J-D, Hwa T, Lenz P (2012) Stripe formation in bacterial systems with density-suppressed motility. Phys Rev Lett 108:198102

    Article  Google Scholar 

  • He X, Ni W-M (2016a) Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources II. Cal Var Partial Differ Equ 55(2):25

    Article  MathSciNet  Google Scholar 

  • He X, Ni W-M (2016b) Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I. Commun Pure Appl Math 69(5):981–1014

    Article  MathSciNet  Google Scholar 

  • He X, Ni W-M (2017) Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources III. Cal Var Partial Differ Equ 56(5):132

    Article  MathSciNet  Google Scholar 

  • He X, Lam K-Y, Lou Y, Ni W-M (2019) Dynamics of a consumer-resource reaction-diffusion model. J Math Biol 78(6):1605–1636

    Article  MathSciNet  Google Scholar 

  • Hutson V, Mischaikow K, Poláčik P (2001) The evolution of dispersal rates in a heterogeneous time-periodic environment. J Math Biol 43(6):501–533

    Article  MathSciNet  Google Scholar 

  • Jin H-Y, Wang ZA (2017) Global stability of prey-taxis systems. J Differ Equ 262(3):1257–1290

    Article  MathSciNet  Google Scholar 

  • Jin H-Y, Wang ZA (2020) Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. Eur J Appl Math. https://doi.org/10.1017/S0956792520000248

    Article  Google Scholar 

  • Jin H-Y, Kim Y-J, Wang ZA (2018) Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J Appl Math 78(3):1632–1657

    Article  MathSciNet  Google Scholar 

  • Jin H-Y, Liu Z, Shi S, Xu J (2019) Boundedness and stabilization in a two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity. J Differ Equ 267:494–524

    Article  MathSciNet  Google Scholar 

  • Jüngel A (2010) Diffusive and nondiffusive population models. In: Naldi G, Pareschi L, Toscani G (eds) Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, Boston, pp 397–425

    Chapter  Google Scholar 

  • Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat 130(2):233–270

    Article  Google Scholar 

  • Kowalczyk R, Szymańska Z (2008) On the global existence of solutions to an aggregation model. J Math Anal Appl 343(1):379–398

    Article  MathSciNet  Google Scholar 

  • Ladyźenskaja OA, Solonnikov VA, Ural’ceva NN (1968) Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of mathematical monographs, vol 23. American Mathematical Society, Providence

  • Lam K-Y, Ni W-M (2012) Uniqueness and complete dynamics in heterogeneous competition-diffusion systems. SIAM J Appl Math 72(6):1695–1712

    Article  MathSciNet  Google Scholar 

  • LaSalle J (1960) Some extensions of liapunov’s second method. IRE Trans Circuit Theory 7(4):520–527

    Article  MathSciNet  Google Scholar 

  • Lou Y (2006) On the effects of migration and spatial heterogeneity on single and multiple species. J Differ Equ 223(2):400–426

    Article  MathSciNet  Google Scholar 

  • Lou Y (2008) Some challenging mathematical problems in evolution of dispersal and population dynamics. In: Friedman A (ed) Tutorials in mathematical biosciences IV. Springer, Berlin, pp 171–205

    Chapter  Google Scholar 

  • Lou Y, Ni W-M (1996) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131(1):79–131

    Article  MathSciNet  Google Scholar 

  • Sastry S (2013) Nonlinear systems: analysis, stability, and control, vol 10. Springer, Berlin

    Google Scholar 

  • Wang M, Zhang Y (2016) The time-periodic diffusive competition models with a free boundary and sign-changing growth rates. Z Angew Math Phys 67(5):132

    Article  MathSciNet  Google Scholar 

  • Zhang B, Kula A, Mack K, Zhai L, Ryce AL, Ni W-M, DeAngelis DL, Van Dyken JD (2017) Carrying capacity in a heterogeneous environment with habitat connectivity. Ecol Lett 20(9):1118–1128

    Article  Google Scholar 

  • Zhao G, Ruan S (2011) Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion. J Math Pures Appl 95(6):627–671

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to referees for their valuable suggestions and comments which greatly improve the exposition of this paper. The research of Z.A. Wang was supported by the Hong Kong RGC GRF Grant No. 15303019 (Project ID P0030816) and an internal Grant No. UAH0 (Project ID P0031504) from the Hong Kong Polytechnic University. The research of J. Xu was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2020A151501140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-An Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZA., Xu, J. On the Lotka–Volterra competition system with dynamical resources and density-dependent diffusion. J. Math. Biol. 82, 7 (2021). https://doi.org/10.1007/s00285-021-01562-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01562-w

Keywords

Mathematics Subject Classification

Navigation