Skip to main content
Log in

Instability of the steady state solution in cell cycle population structure models with feedback

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We show that when cell–cell feedback is added to a model of the cell cycle for a large population of cells, then instability of the steady state solution occurs in many cases. We show this in the context of a generic agent-based ODE model. If the feedback is positive, then instability of the steady state solution is proved for all parameter values except for a small set on the boundary of parameter space. For negative feedback we prove instability for half the parameter space. We also show by example that instability in the other half may be proved on a case by case basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bell GI (1968) Cell growth and division III. Conditions for balanced exponential growth in a mathematical model. Biophys. J. 8:431–444

    Article  Google Scholar 

  • Bell GI, Anderson EC (1967) Cell growth and division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7:329–351

    Article  Google Scholar 

  • Boczko EM, Stowers CC, Gedeon T, Young T (2010) ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast. J. Biolog. Dyn. 4:328–345

    Article  MathSciNet  MATH  Google Scholar 

  • Breeden LL (2014) \(\alpha \)-Factor synchronization of budding yeast. Methods Enzymol. 283:332–342

    Article  Google Scholar 

  • Breitsch N, Moses G, Young TR, Boczko EM (2015) Cell cycle dynamics: clustering is universal in negative feedback systems. J. Math. Biol. 70(5):1151–1175. https://doi.org/10.1007/s00285-014-0786-7

    Article  MathSciNet  MATH  Google Scholar 

  • Buckalew R (2014) Cell cycle clustering in a nonlinear mediated feedback model. Discrete Cont. Dyn. Syst. B 19(4):867–881

    Article  MathSciNet  MATH  Google Scholar 

  • Buckalew R, Finley K, Tanda S, Young T (2015) Evidence for internuclear signaling in Drosophila embryogenesis. Dev. Dyn. 244:1014–1021. https://doi.org/10.1002/DVDY.24298

    Article  Google Scholar 

  • Burnetti AJ, Aydin M, Buchler NE (2016) Cell cycle start is coupled to entry into the yeast metabolic cycle across diverse strains and growth rates. MBoC 27:64–74

    Article  Google Scholar 

  • Cohn A (1922) Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise. Math. Zeit 14:110–148

    Article  MATH  Google Scholar 

  • Danø S, Madsen MF, Sørensen PG (2007) Quantitative characterization of cell synchronization in yeast. PNAS 104:12732–12736

    Article  Google Scholar 

  • Diekmann O, Gyllenberg M, Thieme H, Verduyn Lunel SM (1993a) A cell-cycle model revisited. Centrum for Wiskunde en Informatica, Report AM-R9305, pp 1–18

  • Diekmann O, Gyllenberg M, Thieme H (1993b) Perturbing semigroups by solving Stieltjes renewal equations. J. Differ. Integral Equ. 6:155–181

    MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heijmans H, Thieme H (1984) On the stability of the cell size distribution. J. Math. Biol. 19:227–248

    Article  MathSciNet  MATH  Google Scholar 

  • Duboc P, Marison L, von Stockar U (1996) Physiology of Saccharomyces cerevisiae during cell cycle oscillations. J. Biotechnol. 51:57–72

    Article  Google Scholar 

  • Futcher B (2006) Metabolic cycle, cell cycle and the finishing kick to start. Genome Biol. 7:107–111

    Article  Google Scholar 

  • Gong X, Buckalew R, Young T, Boczko E (2014a) Cell cycle dynamics in a response/signaling feedback system with a gap. J. Biol. Dyn. 8:79–98. https://doi.org/10.1080/17513758.2014.904526

    Article  MathSciNet  Google Scholar 

  • Gong X, Moses G, Neiman A, Young T (2014) Noise-induced dispersion and breakup of clusters in cell cycle dynamics. J. Theor. Biol. 335:160–169. https://doi.org/10.1016/j.jtbi.2014.03.034

    Article  MathSciNet  MATH  Google Scholar 

  • Hannsgen KB, Tyson JJ (1985) Stability of the steady-state size distribution in a model of cell growth and division. J. Math. Biol. 22:293–301

    Article  MathSciNet  MATH  Google Scholar 

  • Hannsgen KB, Tyson JJ, Watson LT (1985) Steady-state size distributions in probabilistic models of the cell division cycle. SIAM J. Appl. Math. 45(4):523–540

    Article  MathSciNet  MATH  Google Scholar 

  • Heijmans HJAM (1984) On the stable size distribution of populations reproducing by fission into two unequal parts. Math. Biosci. 72:19–50

    Article  MathSciNet  MATH  Google Scholar 

  • Heijmans HJAM (1985) An eigenvalue problem related to cell growth. J. Math. Anal. Appl. 111:253–280

    Article  MathSciNet  MATH  Google Scholar 

  • Kuenzi MT, Fiechter A (1969) Changes in carbohydrate composition and trehalose activity during the budding cycle of Saccharomyces cerevisiae. Arch Microbiol. 64:396–407

    Google Scholar 

  • Lasota A, Mackey MC (1984) Globally asymptotic properties of proliferating cell populations. J. Math. Biol. 19:43–62

    Article  MathSciNet  MATH  Google Scholar 

  • Moses G (2015) Dynamical systems in biological modeling: clustering in the cell division cycle of yeast. Dissertation, Ohio University, July 2015

  • Munch T, Sonnleitner B, Fiechter A (1992) The decisive role of the Saccharomyces cervisiae cell cycle behavior for dynamic growth characterization. J. Biotechnol. 22:329–352

    Article  Google Scholar 

  • Murray D, Klevecz R, Lloyd D (2003) Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Exp. Cell. Res. 287:10–15

    Article  Google Scholar 

  • Robertson JB, Stowers CC, Boczko EM, Johnson CH (2008) Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. PNAS 105:17988–17993

    Article  Google Scholar 

  • Stowers C, Young T, Boczko E (2011) The structure of populations of budding yeast in response to feedback. Hypoth. Life Sci. 1:71–84

    Google Scholar 

  • Tyson JJ, Hannsgen KB (1985a) The distributions of cell size and generation time in a model of the cell cycle incorporating size control and random transitions. J. Theor. Biol. 113:29–62

    Article  MathSciNet  Google Scholar 

  • Tyson JJ, Hannsgen KB (1985b) Global asymptotic stability of the size distribution in probabilistic models of the cell cycle. J. Math. Biol. 22:61–68

    Article  MathSciNet  MATH  Google Scholar 

  • Uchiyama K, Morimoto M, Yokoyama Y, Shioya S (1996) Cell cycle dependency of rice \(\alpha \)-amylase production in a recombinant yeast. Biotechnol. Bioeng. 54:262–271

    Article  Google Scholar 

  • Young T, Fernandez B, Buckalew R, Moses G, Boczko E (2012) Clustering in cell cycle dynamics with general responsive/signaling feedback. J. Theor. Biol. 292:103–115

    Article  MATH  Google Scholar 

  • Zietz S (1977) Mathematical modeling of cellular kinetics and optimal control theory in the service of cancer chemotherapy. Dissertation, Department of Mathematics, University of California, Berkeley

Download references

Acknowledgements

B.B. acknowledges support from the Grants EP/J013560/1 and OTKA K104745. T.Y. was partially supported by the National Science Foundation Grant 1418787. B.B. and T.Y. thank the staff of the Warwick Mathematics Institute for their hospitality while this paper was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bárány, B., Moses, G. & Young, T. Instability of the steady state solution in cell cycle population structure models with feedback. J. Math. Biol. 78, 1365–1387 (2019). https://doi.org/10.1007/s00285-018-1312-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1312-0

Keywords

Mathematics Subject Classification

Navigation