Skip to main content
Log in

Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Vegetation patterns are a characteristic feature of semi-arid regions. On hillsides these patterns occur as stripes running parallel to the contours. The Klausmeier model, a coupled reaction–advection–diffusion system, is a deliberately simple model describing the phenomenon. In this paper, we replace the diffusion term describing plant dispersal by a more realistic nonlocal convolution integral to account for the possibility of long-range dispersal of seeds. Our analysis focuses on the rainfall level at which there is a transition between uniform vegetation and pattern formation. We obtain results, valid to leading order in the large parameter comparing the rate of water flow downhill to the rate of plant dispersal, for a negative exponential dispersal kernel. Our results indicate that both a wider dispersal of seeds and an increase in dispersal rate inhibit the formation of patterns. Assuming an evolutionary trade-off between these two quantities, mathematically motivated by the limiting behaviour of the convolution term, allows us to make comparisons to existing results for the original reaction–advection–diffusion system. These comparisons show that the nonlocal model always predicts a larger parameter region supporting pattern formation. We then numerically extend the results to other dispersal kernels, showing that the tendency to form patterns depends on the type of decay of the kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen EJ, Allen LJS, Gilliam X (1996) Dispersal and competition models for plants. J Math Biol 34(4):455–481

    Article  MathSciNet  MATH  Google Scholar 

  • Aronson J, Kigel J, Shmida A (1993) Reproductive allocation strategies in desert and mediterranean populations of annual plants grown with and without water stress. Oecologia 93(3):336–342

    Article  Google Scholar 

  • Baudena M, Rietkerk M (2013) Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor Ecol 6(2):131–141

    Article  Google Scholar 

  • Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 47:RG1005

    Article  Google Scholar 

  • Britton NF (1990) Spatial structures and periodic travelling waves in an integro-differential reaction–diffusion population model. SIAM J Appl Math 50(6):1663–1688

    Article  MathSciNet  MATH  Google Scholar 

  • Bromley J, Brouwer J, Barker A, Gaze S, Valentine C (1997) The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment, south-west Niger. J Hydrol 198(1):1–29

    Article  Google Scholar 

  • Bullock JM, González LM, Tamme R, Götzenberger L, White SM, Pärtel M, Hooftman DAP (2017) A synthesis of empirical plant dispersal kernels. J Ecol 105(1):6–19

    Article  Google Scholar 

  • Cooley JW, Lewis PAW, Welch PD (1969) The fast fourier transform and its applications. IEEE Trans Educ 12(1):27–34

    Article  Google Scholar 

  • Cornet A, Delhoume J, Montaña C (1988) Dynamics of striped vegetation patterns and water balance in the Chihuahuan Desert. In: During HJ, Werger MJA, Willems HJ (eds) Diversity and pattern in plant communities. SPB Academic Publishing, The Hague, pp 221–231

    Google Scholar 

  • Cosner C, Dávila J, Martínez S (2012) Evolutionary stability of ideal free nonlocal dispersal. J Biol Dyn 6(2):395–405

    Article  MathSciNet  Google Scholar 

  • Deblauwe V (2010) Modulation des structures de végétation auto-organisées en milieu aride. Ph.D. Thesis. Université Libre de Bruxelles

  • Dunkerley D, Brown K (2002) Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance. J Arid Environ 51(2):163–181

    Article  Google Scholar 

  • Ellner S, Shmida A (1981) Why are adaptations for long-range seed dispersal rare in desert plants? Oecologia 51(1):133–144

    Article  Google Scholar 

  • Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E (2004) Ecosystem engineers: from pattern formation to habitat creation. Phys Rev Lett 93:098105

    Article  Google Scholar 

  • Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E (2007) A mathematical model of plants as ecosystem engineers. J Theor Biol 244(4):680–691

    Article  MathSciNet  Google Scholar 

  • Gourley SA, Chaplain MAJ, Davidson FA (2001) Spatio-temporal pattern formation in a nonlocal reaction–diffusion equation. Dyn Syst 16(2):173–192

    Article  MathSciNet  MATH  Google Scholar 

  • Hemming CF (1965) Vegetation arcs in Somaliland. J Ecol 53(1):57–67

    Article  Google Scholar 

  • HilleRisLambers R, Rietkerk M, van den Bosch F, Prins HHT, de Kroon H (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82(1):50–61

    Article  Google Scholar 

  • Hutson V, Martinez S, Mischaikow K, Vickers G (2003) The evolution of dispersal. J Math Biol 47(6):483–517

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson WC (1988) Estimating dispersibility of acer, fraxinus and tilia in fragmented landscapes from patterns of seedling establishment. Landscape Ecol 1(3):175–187

    Article  Google Scholar 

  • Kao CY, Lou Y, Shen W (2010) Random dispersal versus non-local dispersal. Discrete Contin Dyn Syst 26(2):551–596

    MathSciNet  MATH  Google Scholar 

  • Kealy BJ, Wollkind DJ (2012) A nonlinear stability analysis of vegetative turing pattern formation for an interaction–diffusion plant-surface water model system in an arid flat environment. Bull Math Biol 74(4):803–833

    Article  MathSciNet  MATH  Google Scholar 

  • Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis V, ElAich A, de Ruiter P (2007) Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems. Nature 449(7159):213–217

    Article  Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284(5421):1826–1828

    Article  Google Scholar 

  • Kletter A, von Hardenberg J, Meron E, Provenzale A (2009) Patterned vegetation and rainfall intermittency. J Theor Biol 256(4):574–583

    Article  MathSciNet  Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate, Handbuch der Klimatologie, vol 1. Verlag von Gebrüder Borntlaeger, Berlin

    Google Scholar 

  • Lefever R, Barbier N, Couteron P, Lejeune O (2009) Deeply gapped vegetation patterns: on crown/root allometry, criticality and desertification. J Theor Biol 261(2):194–209

    Article  MathSciNet  Google Scholar 

  • Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream populations. SIAM J Appl Math 47(4):749–772

    MathSciNet  MATH  Google Scholar 

  • Macfadyen WA (1950) Vegetation patterns in the semi-desert plains of British Somaliland. Geogr J 116(4/6):199–211

    Article  Google Scholar 

  • Merchant SM, Nagata W (2015) Selection and stability of wave trains behind predator invasions in a model with non-local prey competition. IMA J Appl Math 80(4):1155–1177

    Article  MathSciNet  MATH  Google Scholar 

  • Meron E (2012) Pattern-formation approach to modelling spatially extended ecosystems. Ecol Modell 234:70–82

    Article  Google Scholar 

  • Mistro DC, Rodrigues LAD, Schmid AB (2005) A mathematical model for dispersal of an annual plant population with a seed bank. Ecol Modell 188(1):52–61

    Article  Google Scholar 

  • Montaña C (1992) The colonization of bare areas in two-phase mosaics of an arid ecosystem. J Ecol 80(2):315–327

    Article  Google Scholar 

  • Montaña C, Lopez-Portillo J, Mauchamp A (1990) The response of two woody species to the conditions created by a shifting ecotone in an arid ecosystem. J Ecol 78(3):789–798

    Article  Google Scholar 

  • Montaña C, Seghieri J, Cornet A (2001) Vegetation dynamics: recruitment and regeneration in two-phase mosaics. Springer, New York, pp 132–145

    Google Scholar 

  • Neubert M, Kot M, Lewis M (1995) Dispersal and pattern formation in a discrete-time predator–prey model. Theor Popul Biol 48(1):7–43

    Article  MATH  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Article  Google Scholar 

  • Powell JA, Zimmermann NE (2004) Multiscale analysis of active seed dispersal contributes to resolving Reid’s paradox. Ecology 85(2):490–506

    Article  Google Scholar 

  • Pueyo Y, Kéfi S, Alados CL, Rietkerk M (2008) Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos 117(10):1522–1532

    Article  Google Scholar 

  • Pueyo Y, Kéfi S, Dí-az-Sierra R, Alados C, Rietkerk M (2010) The role of reproductive plant traits and biotic interactions in the dynamics of semi-arid plant communities. Theor Popul Biol 78(4):289–297

    Article  Google Scholar 

  • Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23(3):169–175

    Article  Google Scholar 

  • Rietkerk M, Ketner P, Burger J, Hoorens B, Olff H (2000) Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa. Plant Ecol 148(2):207–224

    Article  Google Scholar 

  • Rietkerk M, Boerlijst M, van Langevelde F, HilleRisLambers R, van de Koppel J, Kumar L, Prins H, de Roos A (2002) Self-organization of vegetation in arid ecosystems. Am Nat 160(4):524–530

    Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692):1926–1929

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Porporato A, Ridolfi L, Isham V, Coxi DR (1999) Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proc R Soc Lond A 455(1990):3789–3805

    Article  MATH  Google Scholar 

  • Saco PM, Willgoose GR, Hancock GR (2007) Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol Earth Syst Sci 11(6):1717–1730

    Article  Google Scholar 

  • Salvucci GD (2001) Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation. Water Resour Res 37(5):1357–1365

    Article  Google Scholar 

  • Sherratt JA (2005) An analysis of vegetation stripe formation in semi-arid landscapes. J Math Biol 51(2):183–197

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2010) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I. Nonlinearity 23(10):2657

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2011) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds. Proc R Soc Lond A 467(2135):3272–3294

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013a) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions. Physica D 242(1):30–41

    Article  MATH  Google Scholar 

  • Sherratt JA (2013b) Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments IV: slowly moving patterns and their stability. SIAM J Appl Math 73(1):330–350

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013c) Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments V: the transition from patterns to desert. SIAM J Appl Math 73(4):1347–1367

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Lord GJ (2007) Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor Popul Biol 71(1):1–11

    Article  MATH  Google Scholar 

  • Siteur K, Siero E, Eppinga MB, Rademacher JD, Doelman A, Rietkerk M (2014) Beyond turing: the response of patterned ecosystems to environmental change. Ecol Complex 20:81–96

    Article  MATH  Google Scholar 

  • Thiery JM, D’Herbès JM, Valentin C (1995) A model simulating the genesis of banded vegetation patterns in Niger. J Ecol 83(3):497–507

    Article  Google Scholar 

  • Thompson S, Katul G (2009) Secondary seed dispersal and its role in landscape organization. Geophys Res Lett 36:L02402

    Article  Google Scholar 

  • Tongway DJ, Ludwig JA (1990) Vegetation and soil patterning in semi-arid mulga lands of Eastern Australia. Aust J Ecol 15(1):23–34

    Article  Google Scholar 

  • Valentin C, d’Herbès J, Poesen J (1999) Soil and water components of banded vegetation patterns. CATENA 37(1–2):1–24

    Article  Google Scholar 

  • van Oudtshoorn KVR, van Rooyen MW (2013) Dispersal biology of desert plants adaptations of desert organisms. Springer, Berlin

    Google Scholar 

  • vande Koppel J, Rietkerk M, van Langevelde F, Kumar L, Klausmeier CA, Fryxell JM, Hearne JW, van Andel J, de Ridder N, Skidmore A, Stroosnijder L, Prins HHT, Lundberg Associate Editor: Per (2002) Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am Nat 159(2):209–218

  • vander Stelt S, Doelman A, Hek G, Rademacher JDM (2013) Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model. J Nonlinear Sci 23(1):39–95

    Article  MathSciNet  MATH  Google Scholar 

  • Volis S (2007) Correlated patterns of variation in phenology and seed production in populations of two annual grasses along an aridity gradient. Evol Ecol 21(3):381–393

    Article  Google Scholar 

  • von Hardenberg J, Kletter AY, Yizhaq H, Nathan J, Meron E (2010) Periodic versus scale-free patterns in dryland vegetation. Proc R Soc Lond B 277(1688):1771–1776

    Article  Google Scholar 

  • White LP (1971) Vegetation stripes on sheet wash surfaces. J Ecol 59(2):615–622

    Article  Google Scholar 

  • Worrall GA (1959) The Butana grass patterns. J Soil Sci 10(1):34–53

    Article  Google Scholar 

  • Zelnik YR, Kinast S, Yizhaq H, Bel G, Meron E (2013) Regime shifts in models of dryland vegetation. Philos Trans R Soc Lond A 371(2004):20120358

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Engineering and Physical Sciences Research Council (Grant No. EP/L016508/01), Scottish Funding Council, University of Edinburgh and Heriot-Watt University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Eigentler.

Additional information

Lukas Eigentler was supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (Grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eigentler, L., Sherratt, J.A. Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal. J. Math. Biol. 77, 739–763 (2018). https://doi.org/10.1007/s00285-018-1233-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1233-y

Keywords

Mathematics Subject Classification

Navigation