Abstract
In both Brazilian and European regulations, the impact assessment of sewage discharges into coastal waters is based on microbiological analyses of fecal indicators such as Escherichia coli, frequently used in prevision hydrodynamic models. However, the decay rates of E. coli vary depending on environmental conditions, and analysis may lead to inaccurate conclusions. This study aimed to analyze the decay of culturable and viable (but not culturable) E. coli in outdoor conditions, by creating microcosms inoculated with pre-treated sewage. The microcosms were filled with 9.88 L of filtered water (0.22 μm membrane), 3.5% salt, 0.1–0.2% BHI, and 1% bacterial suspension obtained by reverse filtration. PMA-qPCR of E. coli uidA gene and Colilert measurements were applied to evaluate population counts after 2 h, 4 h, and 26 h. After nine hours of exposure to solar radiation, the viable cells decreased to 2.76% (interpolated value) of the initial population, and the cultivable fraction of the viable population accounted for 0.50%. In the dark period, the bacteria grew again, and viable cells reached 8.54%, while cultivable cells grew to 48.14% of initial population. This behavior is possibly due to the use of nutrients recycled from dead cells. Likewise, populations of E. coli in sewage outfalls remain viable in the sediments, where resuspension can renew blooming.
Graphic Abstract

This is a preview of subscription content, access via your institution.


References
- 1.
Roth F, Lessa GC, Wild C, Kikuchi RK, Naumann MS (2016) Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil). Mar Pollut Bull 106(1–2):43–48. https://doi.org/10.1016/j.marpolbul.2016.03.048
- 2.
Eregno FE, Tryland I, Tjomsland T, Myrmel M, Robertson L, Heistad A (2016) Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events. Sci Total Environ 548–549:270–279. https://doi.org/10.1016/j.scitotenv.2016.01.034
- 3.
Araujo CF, Silva DM, Carneiro MT, Ribeiro S, Fontana-Maurell M, Alvarez P, Asensi MD, Zahner V, Carvalho-Assef AP (2016) Detection of Carbapenemase genes in aquatic environments in Rio de Janeiro, Brazil. Antimicrob Agents Chemother 60(7):4380–4383. https://doi.org/10.1128/AAC.02753-15
- 4.
Zhou ZC, Feng WQ, Han Y, Zheng J, Chen T, Wei YY, Gillings M, Zhu YG, Chen H (2018) Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. Environ Int 121(Pt 2):1155–1161. https://doi.org/10.1016/j.envint.2018.10.032
- 5.
Rebello RC, Regua-Mangia AH (2014) Potential enterovirulence and antimicrobial resistance in Escherichia coli isolates from aquatic environments in Rio de Janeiro, Brazil. Sci Total Environ 490:19–27. https://doi.org/10.1016/j.scitotenv.2014.04.040
- 6.
Feitosa RC, Rosman PCC, Bleninger T, Wasserman JC (2013) Coupling bacterial decay and hydrodynamic models for sewage outfall simulation. J Appl Water Eng Res 1(2):137–147. https://doi.org/10.1080/23249676.2013.878882
- 7.
Mantilla-Calderon D, Hong PY (2017) Fate and persistence of a pathogenic NDM-1-positive Escherichia coli strain in anaerobic and aerobic sludge microcosms. Appl Environ Microb. https://doi.org/10.1128/aem.00640-17
- 8.
Xu LM, Zhang CM, Xu PC, Wang XCC (2018) Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: culturability, membrane permeability, metabolism, and genetic damage. J Environ Sci 65:356–366. https://doi.org/10.1016/j.jes.2017.07.006
- 9.
Bae S, Wuertz S (2012) Survival of host-associated bacteroidales cells and their relationship with Enterococcus spp., Campylobacter jejuni, Salmonella enterica serovar Typhimurium, and adenovirus in freshwater microcosms as measured by propidium monoazide-quantitative PCR. Appl Environ Microb 78(4):922–932. https://doi.org/10.1128/aem.05157-11
- 10.
Korajkic A, McMinn BR, Shanks OC, Sivaganesan M, Fout GS, Ashbolt NJ (2014) Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi river. Appl Environ Microbiol 80(13):3952–3961. https://doi.org/10.1128/AEM.00388-14
- 11.
Mattioli MC, Sassoubre LM, Russell TL, Boehm AB (2017) Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters. Water Res. https://doi.org/10.1016/j.watres.2016.10.066
- 12.
Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72(4):2586–2593. https://doi.org/10.1128/AEM.72.4.2586-2593.2006
- 13.
Berney M, Weilenmann H-U, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microb 72(4):2586–2593. https://doi.org/10.1128/AEM.72.4.2586-2593.2006
- 14.
Mendes Silva D, Domingues L (2015) On the track for an efficient detection of Escherichia coli in water: a review on PCR-based methods. Ecotoxicol Environ Saf 113:400–411. https://doi.org/10.1016/j.ecoenv.2014.12.015
- 15.
Carneiro MT, Perez DV, Feitosa RC, Wasserman JC (2020) Separation of Escherichia coli from natural samples for identification of sources and microcosm inoculation. Braz J Microbiol. https://doi.org/10.1007/s42770-020-00374-2
- 16.
Feitosa RC, Rosman PC, Carvalho JL, Cortes MB, Wasserman JC (2013) Comparative study of fecal bacterial decay models for the simulation of plumes of submarine sewage outfalls. Water Sci Technol 68(3):622–631. https://doi.org/10.2166/wst.2013.286
- 17.
Chan YM, Thoe W, Lee JHW (2015) Field and laboratory studies of Escheriachia coli decay rate in subtropical coastal water. J Hydro-Environ Res 9:14. https://doi.org/10.1016/j.jher.2014.08.002
- 18.
Fernández F (2011) 3D Lagrangian Modeling of Montevideo’s Submarine Outfall Plume. Paper presented at the International Symposium on Outfall Systems, Mar del Plata, Argentina
- 19.
Servais P, Prats J, Passerat J, Garcia-Armisen T (2009) Abundance of culturable versus viable Escherichia coli in freshwater. Can J Microbiol 55(7):905–909
- 20.
Pommepuy M, Butin M, Derrien A, Gourmelon M, Colwell R, Cormier M (1996) Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight. Appl Envir Microbiol 62(12):4621–4626
- 21.
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258. https://doi.org/10.3389/fmicb.2014.00258
- 22.
Ahmed W, Hughes B, Harwood V (2016) Current status of marker genes of bacteroides and related taxa for identifying sewage pollution in environmental waters. Water. https://doi.org/10.3390/w8060231
- 23.
Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320. https://doi.org/10.1016/j.mimet.2006.04.015
- 24.
Takahashi H, Gao Y, Miya S, Kuda T, Kimura B (2017) Discrimination of live and dead cells of Escherichia coli using propidium monoazide after sodium dodecyl sulfate treatment. Food Control 71:79–82. https://doi.org/10.1016/j.foodcont.2016.06.022
- 25.
Shengkun D, Pei-Ying H, Nguyen TH (2014) Persistence of Bacteroides ovatus under simulated sunlight irradiation. BMC Microbiol 14(1):1–10. https://doi.org/10.1186/1471-2180-14-178
- 26.
Bae S, Wuertz S (2015) Decay of host-associated Bacteroidales cells and DNA in continuous-flow freshwater and seawater microcosms of identical experimental design and temperature as measured by PMA-qPCR and qPCR. Water Res 70:205–213. https://doi.org/10.1016/j.watres.2014.10.032
- 27.
Dong S, Hong PY, Nguyen TH (2014) Persistence of Bacteroides ovatus under simulated sunlight irradiation. BMC Microbiol 14:10. https://doi.org/10.1186/1471-2180-14-178
- 28.
Kim M, Wuertz S (2015) Survival and persistence of host-associated Bacteroidales cells and DNA in comparison with Escherichia coli and Enterococcus in freshwater sediments as quantified by PMA-qPCR and qPCR. Water Res 87:182–192. https://doi.org/10.1016/j.watres.2015.09.014
- 29.
Liu R, Yeung LTC, Ho P-H, Lau SCK (2017) Tracking the relative concentration between Bacteroidales DNA markers and culturable Escherichia coli in fecally polluted subtropical seawater: potential use in differentiating fresh and aged pollution. Can J Microbiol 63(3):252–259. https://doi.org/10.1139/cjm-2016-0241
- 30.
Eichmiller JJ, Borchert AJ, Sadowsky MJ, Hicks RE (2014) Decay of genetic markers for fecal bacterial indicators and pathogens in sand from Lake Superior. Water Res 59:99–111. https://doi.org/10.1016/j.watres.2014.04.005
- 31.
Zimmer-Faust AG, Thulsiraj V, Marambio-Jones C, Cao YP, Griffith JF, Holden PA, Jay JA (2017) Effect of freshwater sediment characteristics on the persistence of fecal indicator bacteria and genetic markers within a Southern California watershed. Water Res 119:1–11. https://doi.org/10.1016/j.watres.2017.04.028
- 32.
Kibbee RJ, Ormeci B (2017) Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. J Microbiol Methods 132:139–147. https://doi.org/10.1016/j.mimet.2016.12.004
- 33.
Frahm E, Obst U (2003) Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. J Microbiol Methods 52(1):123
- 34.
Maheux AF, Bissonnette L, Boissinot M, Bernier JL, Huppe V, Picard FJ, Berube E, Bergeron MG (2011) Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and Shigella species in potable water samples. Appl Environ Microbiol 77(17):6199–6207. https://doi.org/10.1128/AEM.02337-10
- 35.
Brooks Y, Aslan A, Tamrakar S, Murali B, Mitchell J, Rose JB (2015) Analysis of the persistence of enteric markers in sewage polluted water on a solid matrix and in liquid suspension. Water Res 76:201–212. https://doi.org/10.1016/j.watres.2015.02.039
- 36.
Truchado P, Gil MI, Kostic T, Allende A (2016) Optimization and validation of a PMA qPCR method for Escherichia coli quantification in primary production. Food Control 62:150–156. https://doi.org/10.1016/j.foodcont.2015.10.014
- 37.
Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S (2017) Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol 123(3):570–581. https://doi.org/10.1111/jam.13468
- 38.
Carrillo E, Hazen TC (1985) Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Appl Environ Microbiol 50(2):468–476
- 39.
Pinto D, Santos MA, Chambel L (2015) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41(1):61–76. https://doi.org/10.3109/1040841X.2013.794127
- 40.
Bucci V, Vulić M, Ruan X, Hellweger FL (2011) Population dynamics of Escherichia coli in surface water. JAWRA J Am Water Resour Assoc 47(3):611–619. https://doi.org/10.1111/j.1752-1688.2011.00528.x
- 41.
Zhang Q, He X, Yan T (2015) Differential decay of wastewater bacteria and change of microbial communities in beach sand and seawater microcosms. Environ Sci Technol 49(14):8531–8540. https://doi.org/10.1021/acs.est.5b01879
- 42.
Gauthier MJ, Munro PM, Mohajer S (1987) Influence of Salts and sodium chloride on the recovery of Escherichia coli from seawater. Curr Microbiol 15:5–10
- 43.
van Elsas JD, Semenov AV, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5(2):173–183. https://doi.org/10.1038/ismej.2010.80
Acknowledgements
An informal authorization to collect raw sewage was obtained, but the responsible for the operation did not authorized to mention the name of the sewage treatment plant in Rio de Janeiro, Brazil. The authors are grateful to CAPES (Grant # 001). JCW is thankful to CNPq for the financial support (CNPq Grant # 302741/2017-8).
Author information
Affiliations
Contributions
MTC: Responsible for conducting the research; author of the first draft; participated in the laboratory and field work. DVP: Advisor of the research; conception of the research; contributions in the manuscript; helped in the laboratory work. RCF: Advisor of the research; constributions in the manuscript; helped in the laboratory work. LGPM: constributions in the manuscript; helped in the laboratory work. MPM: Advisor of the research; constributions in the manuscript; helped in the laboratory work. JCW: Advisor of the research; conception of the research; contributions in the manuscript; participated in the laboratory and field work.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they adhere to the ethical responsibilities established in the IFA of Current Microbiology and that they do not present any conflict of interest regarding this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Carneiro, M.T., Perez, D.V., Feitosa, R.C. et al. Escherichia coli Capacity to Repopulate Microcosms Under Osmotic/U.V. Synergic Stress in Tropical Waters. Curr Microbiol 78, 756–764 (2021). https://doi.org/10.1007/s00284-020-02319-2
Received:
Accepted:
Published:
Issue Date: