Escherichia coli Capacity to Repopulate Microcosms Under Osmotic/U.V. Synergic Stress in Tropical Waters

Abstract

In both Brazilian and European regulations, the impact assessment of sewage discharges into coastal waters is based on microbiological analyses of fecal indicators such as Escherichia coli, frequently used in prevision hydrodynamic models. However, the decay rates of E. coli vary depending on environmental conditions, and analysis may lead to inaccurate conclusions. This study aimed to analyze the decay of culturable and viable (but not culturable) E. coli in outdoor conditions, by creating microcosms inoculated with pre-treated sewage. The microcosms were filled with 9.88 L of filtered water (0.22 μm membrane), 3.5% salt, 0.1–0.2% BHI, and 1% bacterial suspension obtained by reverse filtration. PMA-qPCR of E. coli uidA gene and Colilert measurements were applied to evaluate population counts after 2 h, 4 h, and 26 h. After nine hours of exposure to solar radiation, the viable cells decreased to 2.76% (interpolated value) of the initial population, and the cultivable fraction of the viable population accounted for 0.50%. In the dark period, the bacteria grew again, and viable cells reached 8.54%, while cultivable cells grew to 48.14% of initial population. This behavior is possibly due to the use of nutrients recycled from dead cells. Likewise, populations of E. coli in sewage outfalls remain viable in the sediments, where resuspension can renew blooming.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Roth F, Lessa GC, Wild C, Kikuchi RK, Naumann MS (2016) Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil). Mar Pollut Bull 106(1–2):43–48. https://doi.org/10.1016/j.marpolbul.2016.03.048

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Eregno FE, Tryland I, Tjomsland T, Myrmel M, Robertson L, Heistad A (2016) Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events. Sci Total Environ 548–549:270–279. https://doi.org/10.1016/j.scitotenv.2016.01.034

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Araujo CF, Silva DM, Carneiro MT, Ribeiro S, Fontana-Maurell M, Alvarez P, Asensi MD, Zahner V, Carvalho-Assef AP (2016) Detection of Carbapenemase genes in aquatic environments in Rio de Janeiro, Brazil. Antimicrob Agents Chemother 60(7):4380–4383. https://doi.org/10.1128/AAC.02753-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zhou ZC, Feng WQ, Han Y, Zheng J, Chen T, Wei YY, Gillings M, Zhu YG, Chen H (2018) Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. Environ Int 121(Pt 2):1155–1161. https://doi.org/10.1016/j.envint.2018.10.032

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Rebello RC, Regua-Mangia AH (2014) Potential enterovirulence and antimicrobial resistance in Escherichia coli isolates from aquatic environments in Rio de Janeiro, Brazil. Sci Total Environ 490:19–27. https://doi.org/10.1016/j.scitotenv.2014.04.040

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Feitosa RC, Rosman PCC, Bleninger T, Wasserman JC (2013) Coupling bacterial decay and hydrodynamic models for sewage outfall simulation. J Appl Water Eng Res 1(2):137–147. https://doi.org/10.1080/23249676.2013.878882

    Article  Google Scholar 

  7. 7.

    Mantilla-Calderon D, Hong PY (2017) Fate and persistence of a pathogenic NDM-1-positive Escherichia coli strain in anaerobic and aerobic sludge microcosms. Appl Environ Microb. https://doi.org/10.1128/aem.00640-17

    Article  Google Scholar 

  8. 8.

    Xu LM, Zhang CM, Xu PC, Wang XCC (2018) Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: culturability, membrane permeability, metabolism, and genetic damage. J Environ Sci 65:356–366. https://doi.org/10.1016/j.jes.2017.07.006

    Article  Google Scholar 

  9. 9.

    Bae S, Wuertz S (2012) Survival of host-associated bacteroidales cells and their relationship with Enterococcus spp., Campylobacter jejuni, Salmonella enterica serovar Typhimurium, and adenovirus in freshwater microcosms as measured by propidium monoazide-quantitative PCR. Appl Environ Microb 78(4):922–932. https://doi.org/10.1128/aem.05157-11

    CAS  Article  Google Scholar 

  10. 10.

    Korajkic A, McMinn BR, Shanks OC, Sivaganesan M, Fout GS, Ashbolt NJ (2014) Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi river. Appl Environ Microbiol 80(13):3952–3961. https://doi.org/10.1128/AEM.00388-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mattioli MC, Sassoubre LM, Russell TL, Boehm AB (2017) Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters. Water Res. https://doi.org/10.1016/j.watres.2016.10.066

    Article  PubMed  Google Scholar 

  12. 12.

    Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72(4):2586–2593. https://doi.org/10.1128/AEM.72.4.2586-2593.2006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Berney M, Weilenmann H-U, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microb 72(4):2586–2593. https://doi.org/10.1128/AEM.72.4.2586-2593.2006

    CAS  Article  Google Scholar 

  14. 14.

    Mendes Silva D, Domingues L (2015) On the track for an efficient detection of Escherichia coli in water: a review on PCR-based methods. Ecotoxicol Environ Saf 113:400–411. https://doi.org/10.1016/j.ecoenv.2014.12.015

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Carneiro MT, Perez DV, Feitosa RC, Wasserman JC (2020) Separation of Escherichia coli from natural samples for identification of sources and microcosm inoculation. Braz J Microbiol. https://doi.org/10.1007/s42770-020-00374-2

    Article  PubMed  Google Scholar 

  16. 16.

    Feitosa RC, Rosman PC, Carvalho JL, Cortes MB, Wasserman JC (2013) Comparative study of fecal bacterial decay models for the simulation of plumes of submarine sewage outfalls. Water Sci Technol 68(3):622–631. https://doi.org/10.2166/wst.2013.286

    Article  PubMed  Google Scholar 

  17. 17.

    Chan YM, Thoe W, Lee JHW (2015) Field and laboratory studies of Escheriachia coli decay rate in subtropical coastal water. J Hydro-Environ Res 9:14. https://doi.org/10.1016/j.jher.2014.08.002

    Article  Google Scholar 

  18. 18.

    Fernández F (2011) 3D Lagrangian Modeling of Montevideo’s Submarine Outfall Plume. Paper presented at the International Symposium on Outfall Systems, Mar del Plata, Argentina

  19. 19.

    Servais P, Prats J, Passerat J, Garcia-Armisen T (2009) Abundance of culturable versus viable Escherichia coli in freshwater. Can J Microbiol 55(7):905–909

    CAS  Article  Google Scholar 

  20. 20.

    Pommepuy M, Butin M, Derrien A, Gourmelon M, Colwell R, Cormier M (1996) Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight. Appl Envir Microbiol 62(12):4621–4626

    CAS  Article  Google Scholar 

  21. 21.

    Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258. https://doi.org/10.3389/fmicb.2014.00258

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ahmed W, Hughes B, Harwood V (2016) Current status of marker genes of bacteroides and related taxa for identifying sewage pollution in environmental waters. Water. https://doi.org/10.3390/w8060231

    Article  Google Scholar 

  23. 23.

    Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320. https://doi.org/10.1016/j.mimet.2006.04.015

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Takahashi H, Gao Y, Miya S, Kuda T, Kimura B (2017) Discrimination of live and dead cells of Escherichia coli using propidium monoazide after sodium dodecyl sulfate treatment. Food Control 71:79–82. https://doi.org/10.1016/j.foodcont.2016.06.022

    CAS  Article  Google Scholar 

  25. 25.

    Shengkun D, Pei-Ying H, Nguyen TH (2014) Persistence of Bacteroides ovatus under simulated sunlight irradiation. BMC Microbiol 14(1):1–10. https://doi.org/10.1186/1471-2180-14-178

    Article  Google Scholar 

  26. 26.

    Bae S, Wuertz S (2015) Decay of host-associated Bacteroidales cells and DNA in continuous-flow freshwater and seawater microcosms of identical experimental design and temperature as measured by PMA-qPCR and qPCR. Water Res 70:205–213. https://doi.org/10.1016/j.watres.2014.10.032

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Dong S, Hong PY, Nguyen TH (2014) Persistence of Bacteroides ovatus under simulated sunlight irradiation. BMC Microbiol 14:10. https://doi.org/10.1186/1471-2180-14-178

    Article  Google Scholar 

  28. 28.

    Kim M, Wuertz S (2015) Survival and persistence of host-associated Bacteroidales cells and DNA in comparison with Escherichia coli and Enterococcus in freshwater sediments as quantified by PMA-qPCR and qPCR. Water Res 87:182–192. https://doi.org/10.1016/j.watres.2015.09.014

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Liu R, Yeung LTC, Ho P-H, Lau SCK (2017) Tracking the relative concentration between Bacteroidales DNA markers and culturable Escherichia coli in fecally polluted subtropical seawater: potential use in differentiating fresh and aged pollution. Can J Microbiol 63(3):252–259. https://doi.org/10.1139/cjm-2016-0241

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Eichmiller JJ, Borchert AJ, Sadowsky MJ, Hicks RE (2014) Decay of genetic markers for fecal bacterial indicators and pathogens in sand from Lake Superior. Water Res 59:99–111. https://doi.org/10.1016/j.watres.2014.04.005

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Zimmer-Faust AG, Thulsiraj V, Marambio-Jones C, Cao YP, Griffith JF, Holden PA, Jay JA (2017) Effect of freshwater sediment characteristics on the persistence of fecal indicator bacteria and genetic markers within a Southern California watershed. Water Res 119:1–11. https://doi.org/10.1016/j.watres.2017.04.028

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kibbee RJ, Ormeci B (2017) Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. J Microbiol Methods 132:139–147. https://doi.org/10.1016/j.mimet.2016.12.004

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Frahm E, Obst U (2003) Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. J Microbiol Methods 52(1):123

    CAS  Article  Google Scholar 

  34. 34.

    Maheux AF, Bissonnette L, Boissinot M, Bernier JL, Huppe V, Picard FJ, Berube E, Bergeron MG (2011) Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and Shigella species in potable water samples. Appl Environ Microbiol 77(17):6199–6207. https://doi.org/10.1128/AEM.02337-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Brooks Y, Aslan A, Tamrakar S, Murali B, Mitchell J, Rose JB (2015) Analysis of the persistence of enteric markers in sewage polluted water on a solid matrix and in liquid suspension. Water Res 76:201–212. https://doi.org/10.1016/j.watres.2015.02.039

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Truchado P, Gil MI, Kostic T, Allende A (2016) Optimization and validation of a PMA qPCR method for Escherichia coli quantification in primary production. Food Control 62:150–156. https://doi.org/10.1016/j.foodcont.2015.10.014

    CAS  Article  Google Scholar 

  37. 37.

    Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S (2017) Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol 123(3):570–581. https://doi.org/10.1111/jam.13468

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Carrillo E, Hazen TC (1985) Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Appl Environ Microbiol 50(2):468–476

    Article  Google Scholar 

  39. 39.

    Pinto D, Santos MA, Chambel L (2015) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41(1):61–76. https://doi.org/10.3109/1040841X.2013.794127

    Article  Google Scholar 

  40. 40.

    Bucci V, Vulić M, Ruan X, Hellweger FL (2011) Population dynamics of Escherichia coli in surface water. JAWRA J Am Water Resour Assoc 47(3):611–619. https://doi.org/10.1111/j.1752-1688.2011.00528.x

    Article  Google Scholar 

  41. 41.

    Zhang Q, He X, Yan T (2015) Differential decay of wastewater bacteria and change of microbial communities in beach sand and seawater microcosms. Environ Sci Technol 49(14):8531–8540. https://doi.org/10.1021/acs.est.5b01879

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Gauthier MJ, Munro PM, Mohajer S (1987) Influence of Salts and sodium chloride on the recovery of Escherichia coli from seawater. Curr Microbiol 15:5–10

    CAS  Article  Google Scholar 

  43. 43.

    van Elsas JD, Semenov AV, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5(2):173–183. https://doi.org/10.1038/ismej.2010.80

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

An informal authorization to collect raw sewage was obtained, but the responsible for the operation did not authorized to mention the name of the sewage treatment plant in Rio de Janeiro, Brazil. The authors are grateful to CAPES (Grant # 001). JCW is thankful to CNPq for the financial support (CNPq Grant # 302741/2017-8).

Author information

Affiliations

Authors

Contributions

MTC: Responsible for conducting the research; author of the first draft; participated in the laboratory and field work. DVP: Advisor of the research; conception of the research; contributions in the manuscript; helped in the laboratory work. RCF: Advisor of the research; constributions in the manuscript; helped in the laboratory work. LGPM: constributions in the manuscript; helped in the laboratory work. MPM: Advisor of the research; constributions in the manuscript; helped in the laboratory work. JCW: Advisor of the research; conception of the research; contributions in the manuscript; participated in the laboratory and field work.

Corresponding author

Correspondence to Julio C. Wasserman.

Ethics declarations

Conflict of interest

The authors declare that they adhere to the ethical responsibilities established in the IFA of Current Microbiology and that they do not present any conflict of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 245 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carneiro, M.T., Perez, D.V., Feitosa, R.C. et al. Escherichia coli Capacity to Repopulate Microcosms Under Osmotic/U.V. Synergic Stress in Tropical Waters. Curr Microbiol 78, 756–764 (2021). https://doi.org/10.1007/s00284-020-02319-2

Download citation