Description of Paenibacillus yunnanensis sp. nov., Isolated from a Tepid Spring

Abstract

A Gram stain-positive, rod-shaped and motile bacterium, designated SYSU G01003T was isolated from a sediment sample collected from tepid spring in Tengchong, Yunnan province, southwestern China. Growth observed at temperature ranging 28–37 °C (optimum 37 °C) and pH 6.0–8.0 (optimum pH 7.0). Tolerance to NaCl was up to 2.5% (w/v) (optimal in the absence of NaCl). The cell wall peptidoglycan is meso-2,6-diaminopimelic acid and MK-7 as the only respiratory quinone. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified aminophospholipid, phospholipid, and polar lipid. The major fatty acids are C16:0, anteiso-C15:0 and C14:0. The genomic DNA G + C content of the type strain was 54.0 mol%. The average nucleotide identity (ANIb and ANIm) values between SYSU G01003T and Paenibacillus azotifigens LMG 29963T were below the cut-off level (95–96%) recommended as the average nucleotide identity (ANI) criterion for interspecies identity. Based on the above results strain SYSU G01003T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus yunnanensis sp. nov. is proposed. The type strain, SYSU G01003T (=KCTC 43132T = CGMCC 1.17384T).

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15(1):203

    Article  Google Scholar 

  2. 2.

    Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882

    CAS  PubMed  Google Scholar 

  3. 3.

    Ash C, Priest FG, Collins MD (1994) Molecular identification of rRNA group 3 bacilli (ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260

    CAS  Article  Google Scholar 

  4. 4.

    Parte AC (2018) LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829

    Article  Google Scholar 

  5. 5.

    Akaracharanya A, Lorliam W, Tanasupawat S, Lee KC, Lee JS (2009) Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. Int J Syst Evol Microbiol 59:2680–2684

    CAS  Article  Google Scholar 

  6. 6.

    Lee HW, Roh SW, Yim KJ, Shin NR, Lee J, Whon TW, Kim JY, Hyun DW, Kim D, Bae JW (2013) Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. J Microbiol 51:312–317

    CAS  Article  Google Scholar 

  7. 7.

    Siddiqi MZ, Choi GM, Choi KD, Im WT (2017) Paenibacillus azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 67:4917–4922

    Article  Google Scholar 

  8. 8.

    Suominen I, Spröer C, Kämpfer P, Rainey FA, Lounatmaa K, Salkinoja-Salonen M (2003) Paenibacillus stellifer sp. nov., a cyclodextrin-producing species isolated from paperboard. Int J Syst Evol Microbiol 53:1369–1374

    CAS  Article  Google Scholar 

  9. 9.

    Narsing Rao MP, Dong ZY, Kan Y, Dong L, Li S, Xiao M, Kang YQ, Zhang K, Li WJ (2020) Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 70:1977–1981

    Article  Google Scholar 

  10. 10.

    Narsing Rao MP, Dong ZY, Kan Y, Zhang K, Fang BZ, Xiao M, Kang YQ, Li WJ (2020) Description of Paenibacillus antri sp. nov. and Paenibacillus mesophilus sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 70:1048–1054

    Article  Google Scholar 

  11. 11.

    Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  Google Scholar 

  12. 12.

    Dong ZY, Narsing Rao MP, Wang HF, Fang BZ, Liu YH, Li L, Xiao M, Li WJ (2019) Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ 686:107–117

    CAS  Article  Google Scholar 

  13. 13.

    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  Article  Google Scholar 

  14. 14.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  15. 15.

    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  Article  Google Scholar 

  16. 16.

    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  17. 17.

    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  Article  Google Scholar 

  18. 18.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  Article  Google Scholar 

  19. 19.

    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  Article  Google Scholar 

  20. 20.

    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  21. 21.

    Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704

    CAS  Article  Google Scholar 

  22. 22.

    Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715

    CAS  Article  Google Scholar 

  23. 23.

    Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    CAS  Article  Google Scholar 

  24. 24.

    Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    CAS  Article  Google Scholar 

  25. 25.

    Collins M, Pirouz T, Goodfellow M, Minnikin D (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    CAS  Article  Google Scholar 

  26. 26.

    Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    CAS  Article  Google Scholar 

  27. 27.

    Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    CAS  Article  Google Scholar 

  28. 28.

    Collins M, Jones D (1980) Lipids in the classification and Identification of Coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Microbiol 48:459–470

    CAS  Google Scholar 

  29. 29.

    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Microbial ID Inc, Newark

    Google Scholar 

  30. 30.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    CAS  Article  Google Scholar 

  31. 31.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    CAS  Article  Google Scholar 

  32. 32.

    Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    CAS  Article  Google Scholar 

  33. 33.

    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    CAS  Article  Google Scholar 

  34. 34.

    Richter M, Rosselló-Móra R, Glöckner FO, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    CAS  Article  Google Scholar 

  35. 35.

    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 8(3):e1319

    Article  Google Scholar 

  36. 36.

    Buchfink B, Xie C, Huson D (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    CAS  Article  Google Scholar 

  37. 37.

    van Dongen S, Abreu-Goodger C (2012) Using MCL to extract clusters from networks. Methods Mol Biol 804:281–295

    Article  Google Scholar 

  38. 38.

    Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    CAS  Article  Google Scholar 

  39. 39.

    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Key-Area Research and Development Program of Guangdong Province (2018B020206001). The authors are also grateful to the Researchers Supporting Project Number (RSP-2019/53), King Saud University, Riyadh, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 910 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narsing Rao, M.P., Dong, Z., Amoolya, S. et al. Description of Paenibacillus yunnanensis sp. nov., Isolated from a Tepid Spring. Curr Microbiol (2020). https://doi.org/10.1007/s00284-020-02087-z

Download citation