Microbiological Quality Assessment of Water and Fish from Karst Rivers of the Southeast Black Sea Basin (Croatia), and Antimicrobial Susceptibility of Aeromonas Isolates

Abstract

Karst rivers are of great interest for commercial fishing and aquaculture, yet they are quite vulnerable aquatic environments because the permeable karst rocks do not effectively filter out contaminants. To understand the current state of karst rivers water quality, we analysed the physico-chemical and microbiological parameters, focusing on antibiotic pollution and the emergence of antibiotic-resistant microbes of three such rivers in Croatia. Water quality varied between classes I and II across sampling sites, and the numbers of total coliforms, enterococci and heterotrophic bacteria varied substantially among sites. Swabs from fish gills, spleen, liver and kidneys were cultured and 94 isolates identified by MALDI-TOF mass spectrometry. The predominant genus was Aeromonas (42.5% of all identified isolates), known for its adaptability to polluted environments and its frequent association with antibiotic resistance. Of the selected Aeromonas isolates known as most pathogenic, half were resistant to at least three antibiotic categories. The Enterobacteriaceae family was represented by the greatest number of genera, most of which are pathogenic for humans and animals and are spoilage bacteria for fish. The results of this study highlight the extent of antibiotic contamination in aquatic environments and the increasing threat of pathogenic and spoilage bacteria in traditionally high-quality karst rivers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article. Any additional data requirements are available on request from the corresponding author.

References

  1. 1.

    Ford DC, Williams PW (1989) Karst Geomorphology and Hydrology. Wiley, England, UK

    Google Scholar 

  2. 2.

    FAO (2012) Commercial inland fishing in member countries of the European Inland Fisheries Advisory Commission (EIFAC): Operational environments, property rights regimes and socio-economic indicators. Italy, Rome

    Google Scholar 

  3. 3.

    Crorivers (2018). Mrežnica. Retrieved from: https://crorivers.com/mreznica/ (accessed 13 August 2018)

  4. 4.

    Baron S, Granier SA, Larvor E, Jouy E, Cineux M, Wilhelm A et al (2017) Aeromonas diversity and antimicrobial susceptibility in freshwater—an attempt to set generic epidemiological cut-off values. Front Microbiol 8:503. https://doi.org/10.3389/fmicb.2017.00503

    Article  PubMed Central  Google Scholar 

  5. 5.

    Goñi-Urriza M, Pineau L, Capdepuy M, Roques C, Caumette P, Quentin C (2000) Antimicrobial resistance of mesophilic Aeromonas spp isolated from two European rivers. J Antimicrob Chemother 46(2):297–301. https://doi.org/10.1093/jac/46.2.297

    Article  Google Scholar 

  6. 6.

    Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    CAS  Article  Google Scholar 

  7. 7.

    Kapetanović D, Teskeredžić E (2004) Aeromonasna bakterijemija mlađi kalifornijske pastrve (Oncorhynchus mykiss), osjetljivost prema antimikrobnim tvarima. Croatian Journal of Fisheries 62(3):95–102

    Google Scholar 

  8. 8.

    Parker JL, Shaw JG (2011) Aeromonas spp. clinical microbiology and disease. J Infect 62(2):109–118. https://doi.org/10.1016/j.jinf.2010.12.003

    Article  Google Scholar 

  9. 9.

    Harnisz M, Korzeniewska E (2018) The prevalence of multidrug-resistant Aeromonas spp. in the municipal wastewater system and their dissemination in the environment. Sci Total Environ 626:377–383. https://doi.org/10.1016/j.scitotenv.2018.01.100

    CAS  Article  Google Scholar 

  10. 10.

    Varela AR, Nunes OC, Manaia CM (2016) Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Sci Total Environ 542:665–671. https://doi.org/10.1016/j.scitotenv.2015.10.124

    CAS  Article  Google Scholar 

  11. 11.

    Teskeredžić, E., Teskeredžić, Z., Tomec, M., Kurtović, B., Kapetanović, D., Vardić, I., Klarić, D., Španović, B., Šoštarić-Vulić, Z. (2003). Monitoring of present status of fish population in Kupa, Korana, Dobra, Mreznica and Zrmanja rivers. (report)

  12. 12.

    Valić, D., Vardić Smrzlić, I., Kralj, T., Žunić, J., Šoštarić Vulić, Z., Bulat, T. (2018). Monitoring of freshwater fishery in 2018 - Group C - Fishing area Kupa. (report)

  13. 13.

    Frančišković-Bilinski S, Bhattacharya AK, Bilinski H, Bhattacharya BD, Mitra A, Sarkar SK (2012) Fluvial geomorphology of the Kupa River drainage basin, Croatia: A perspective of its application in river management and pollution studies. Zeitschrift für Geomorphologie 56(1):93–119. https://doi.org/10.1127/0372-8854/2011/0056

    Article  Google Scholar 

  14. 14.

    Bonacci O, Andrić I (2010) Hidrološka analiza krške rijeke Dobre. Hrvatske vode: časopis za vodno gospodarstvo 18(72):127–138

    Google Scholar 

  15. 15.

    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    CAS  Article  Google Scholar 

  16. 16.

    HRN EN 14011:2005. Water quality -- Sampling of fish with electricity (EN 14011:2003)

  17. 17.

    Official Gazette of the Republic of Croatia, Water Classification Regulation, No. 137/2008

  18. 18.

    Shin HB, Yoon J, Lee Y, Kim MS, Lee K (2015) Comparison of MALDI-TOF MS, housekeeping gene sequencing, and 16s rRNA gene sequencing for identification of Aeromonas clinical isolates. Yonsei Med J 56:550–555. https://doi.org/10.3349/ymj.2015.56.2.550

    CAS  Article  PubMed Central  Google Scholar 

  19. 19.

    Kozińska A, Pekala A (2004) First isolation of Shewanella putrefaciens from freshwater fish—a potential new pathogen of fish. Bulletin European Association of Fish Pathologists 24(4):189–193. https://doi.org/10.13140/RG.2.1.2736.7282

    Article  Google Scholar 

  20. 20.

    Aydin S, Ciltas A, Yetim H, Akyurt I (2005) Clinical, Pathological and Haematological Effects of Micrococcus luteus Infections in Rainbow Trout (Oncorhynchus mykiss Walbaum). Journal of Animal and Veterinary Advances 4(2):167–174

    Google Scholar 

  21. 21.

    Kozińska A, Paździor E, Pekala A, Niemczuk W (2014) Acinetobacter johnsonii and Acinetobacter lwoffii- the emerging fish pathogens. Bull Vet Inst Pulawy 58:193–199. https://doi.org/10.2478/bvip-2014-0029

    CAS  Article  Google Scholar 

  22. 22.

    González CJ, Santos JA, García-López ML, Otero A (2000) Psychrobacters and Related Bacteria in Freshwater Fish. J Food Prot 63(3):315–321. https://doi.org/10.4315/0362-028X-63.3.315

    Article  Google Scholar 

  23. 23.

    López-Sabater EI, Rodríguez-Jerez JJ, Hernández-Herrero M, Mora-Ventura MT (1996) Incidence of histamine-forming bacteria and histamine content in scombroid fish species from retail markets in the Barcelona area. Int J Food Microbiol 28(3):411–418. https://doi.org/10.1016/0168-1605(94)00007-7

    Article  Google Scholar 

  24. 24.

    Michel C, Matte-Tailliez O, Kerouault B, Bernardet JF (2005) Resistance pattern and assessment of phenicol agents' minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol 99(2):323–332. https://doi.org/10.1111/j.1365-2672.2005.02592.x

    CAS  Article  Google Scholar 

  25. 25.

    Bin Park S, Aoki T, Jung TS (2012) Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res 43:67. https://doi.org/10.1186/1297-9716-43-67

    Article  Google Scholar 

  26. 26.

    Macé S, Cornet J, Chevalier F, Cardinal M, Pilet MF, Dousset X, Joffraud JJ (2012) Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR-TTGE. Food Microbiol 30(1):164–172. https://doi.org/10.1016/j.fm.2011.10.013

    CAS  Article  Google Scholar 

  27. 27.

    Gelev I, Gelev E, Steigerwalt AG, Carter GP, Brenner DJ (1990) Identification of the bacterium associated with haemorrhagic septicaemia in rainbow trout as Hafnia alvei. Res Microbiol 141(5):573–576. https://doi.org/10.1016/0923-2508(90)90021-H

    CAS  Article  Google Scholar 

  28. 28.

    Brenden RA, Miller MA, Janda JM (1988) Clinical disease spectrum and pathogenic factors associated with Plesiomonas shigelloides infections in humans. Rev Infect Dis 10(2):303–316

    CAS  Article  Google Scholar 

  29. 29.

    Nithya C, Gnanalashmi B, Karutha Pandian S (2011) Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria. Marine Environmental Research 71(4):283–294

    CAS  Article  Google Scholar 

  30. 30.

    Maravić A, Skočibušić M, Šamanić I, Puizina J (2013) (2012) Profile and multidrug resistance determinants of Chryseobacterium indologenes from seawater and marine fauna. World J Microbiol Biotechnol 29:515

    Article  Google Scholar 

  31. 31.

    Rodrigues MJ, Ho P, López-Caballero ME, Vaz-Pires P, Nunes ML (2003) Characterization and identification of microflora from soaked cod and respective salted raw materials. Food Microbiol 20(4):471–481

    Article  Google Scholar 

  32. 32.

    Soler L, Figueras MJ, Chacón MR, Vila J, Marco F, Martı́nez- Murcia AJ, Guarro J (2002) The antimicrobial susceptibility of aeromonas popoffii recovered from freshwater and seawater. FEMS Immunol Med Microbiol 32:243–247

    CAS  Article  Google Scholar 

  33. 33.

    Burbank DR, LaPatra SE, Fornshell G, Cain KD (2012) Isolation of bacterial probiotic candidates from the gastrointestinal tract of rainbow trout, Oncorhynchus mykiss (Walbaum), and screening for inhibitory activity against Flavobacterium psychrophilum. J Fish Dis 35:809–816

    CAS  Google Scholar 

  34. 34.

    Paterson DL (2006) Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med. 119(6):S20–S28. https://doi.org/10.1016/j.amjmed.2006.03.013

    CAS  Article  Google Scholar 

  35. 35.

    Gauthier J, Charette SJ, Derome N (2017) Draft genome sequence of Pseudomonas fluorescens ML11A, an endogenous strain from brook charr with antagonistic properties against Aeromonas salmonicida subsp. salmonicida. Genome Announc 5:e01716–e1816. https://doi.org/10.1128/genomeA.01716-16

    Article  PubMed Central  Google Scholar 

  36. 36.

    Janda JM, Abbott SL (2010) The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clin Microbiol Rev 23(1):35–73. https://doi.org/10.1128/CMR.00039-09

    CAS  Article  PubMed Central  Google Scholar 

  37. 37.

    Pal BB, Pattnaik SK, Mohanty A, Samal SK, Khuntia HK, Nayak SK (2016) Incidence of Aeromonas species isolated from Diarrhoea patients and water samples from coastal districts of Odisha, India. International Journal of Current Microbiology and Applied Sciences 5:990–999. https://doi.org/10.20546/ijcmas.2016.507.111

    CAS  Article  Google Scholar 

  38. 38.

    Huddleston JR, Brokaw JM, Zak JC, Jeter RM (2013) Natural transformation as a mechanism of horizontal gene transfer among environmental Aeromonas species. Syst Appl Microbiol 36:224–234. https://doi.org/10.1016/j.syapm.2013.01.004

    CAS  Article  Google Scholar 

  39. 39.

    Lijon B, Khatun M, Islam A, Khatun M, Islam A (2015) Detection of multidrug resistance Aeromonas hydrophila in farm raised fresh water prawns. Journal of Advanced Veterinary and Animal Research 2(4):469–474. https://doi.org/10.5455/javar.2015.b120

    Article  Google Scholar 

  40. 40.

    Yang Q, Zhao M, Wang K-Y, Wang J, He Y, Wang E-L, Liu T, Chen D-F, Lai W (2017) Multidrug-Resistant Aeromonas veronii Recovered from Channel Catfish (Ictalurus punctatus) in China: Prevalence and Mechanisms of Fluoroquinolone Resistance. Microbial Drug Resistance 23:4. https://doi.org/10.1089/mdr.2015.0296

    CAS  Article  Google Scholar 

  41. 41.

    Deng Y, Wu Y, Jiang L, Tan A, Zhang R, Luo L (2016) Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals. Front Microbiol 2016(7):935. https://doi.org/10.3389/fmicb.2016.00935

    Article  Google Scholar 

  42. 42.

    Clinical and Laboratory Standard Institute (CLSI) (2005) CLSI document M100–S15. Performance standard for antimicrobial susceptibility testing, CLSI, Wayne, PA, USA

    Google Scholar 

  43. 43.

    Esteve C, Alcaide E, Giménez MJ (2015) Multidrug-resistant (MDR) Aeromonas recovered from the metropolitan area of Valencia (Spain): diseases spectrum and prevalence in the environment. Eur J Clin Microbiol Infect Dis 34(1):137–145. https://doi.org/10.1007/s10096-014-2210-z

    CAS  Article  Google Scholar 

  44. 44.

    Skwor T, Shinko J, Augustyniak A, Gee C, Andrasoc G (2013) Aeromonas hydrophila and Aeromonas veronii Predominate among Potentially Pathogenic Ciprofloxacin- and Tetracycline-Resistant Aeromonas Isolates from Lake Erie. Appl Environ Microbiol 80(3):841–848. https://doi.org/10.1128/AEM.03645-13

    CAS  Article  Google Scholar 

  45. 45.

    Chen PL, Tsai PJ, Chen CS, Lu YC, Chen HM, Lee NY, Lee CC, Li CW, Li MC, Wu CJ, Ko WC (2015) Aeromonas stool isolates from individuals with or without diarrhea in southern Taiwan: Predominance of Aeromonas veronii. J Microbiol Immunol Infect 48(6):618–624. https://doi.org/10.1016/j.jmii.2014.08.007

    Article  Google Scholar 

  46. 46.

    Li J, Ni XD, Liu YJ, Lu CP (2011) Detection of three virulence genes alt, ahp and aerA in Aeromonas hydrophila and their relationship with actual virulence to zebrafish. J Appl Microbiol 110:823–830. https://doi.org/10.1111/j.1365-2672.2011.04944.x

    CAS  Article  Google Scholar 

  47. 47.

    Sánchez-Céspedes J, Figueras MJ, Aspiroz C, Aldea MJ, Toledo M, Alperí A, Marco F, Vila J (2009) Development of imipenem resistance in an Aeromonas veronii biovar sobria clinical isolate recovered from a patient with cholangitis. J Med Microbiol 58:451–455. https://doi.org/10.1099/jmm.0.47804-0

    CAS  Article  Google Scholar 

  48. 48.

    Austin B, Austin DA (1999) Bacterial fish pathogens: disease in farmed and wild fish, 3rd edn. Springer Verlag, New York, NY

    Google Scholar 

  49. 49.

    Huys G, Kampfer P, Swings J (2001) New DNA-DNA hybridization and phenotypic data on the species Aeromonas ichthiosmia and Aeromonas allosaccharophila: A. ichthiosmia Schubert, et al 1990 is a later synonym of A. veronii Hickman-Brenner et al. 1987. Syst Appl Microbiol 24:177–182. https://doi.org/10.1078/0723-2020-00038

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the projects funded by the Ministry of Agriculture Republic of Croatia and by the Croatian Science Foundation (IP-2014–09-3494: Aquatic microbial ecology as an indicator of the health status of the environment – AQUAHEALTH). We are thankful to Damir Valić, PhD for his contribution in the sampling process and for valuable insights to the paper. We are thankful to Creaducate Consulting GmbH for English language editing and proofreading of our manuscript.

Funding

“Monitoring of fish stock in fishing area of the river Kupa in 2016”, Ministry of Agriculture—Directorate of Fisheries Republic of Croatia and AQUAHEALTH (IP-2014–09-3494), Croatian Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Damir Kapetanović.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

All applicable institutional, national and international guidelines for the welfare and use of animals were followed. Electrofishing and fish collection for Freshwater Fisheries Monitoring Program in 2016 was made with the authorization of the Ministry of Agriculture of the Republic of Croatia (Class: UP324-01/16–01/134, Reg. No: 525–13/0515–16-2 of August 3, 2016), based on the Contract concluded with Ministry of Agriculture (Class: 406–01/16–01/42, Reg. No: 525–05 / 03836–16-14 of June 30, 2016). We consulted extensively with the Bioethics Committee of the Ruđer Bošković Institute who determined that Freshwater Fisheries Monitoring Program in 2016 did not need ethical approval, as the fish were euthanized prior to commencement of the organ sampling. Project AQUAHALTH was approved by the Bioethics Committee of the Ministry of Agriculture of the Republic of Croatia Directorate for Veterinary and Food Safety (Class: UP/I-322–01/15–01/71; Reg. No: 525–10/0255–15-3 of October 6, 2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolda, A., Mujakić, I., Perić, L. et al. Microbiological Quality Assessment of Water and Fish from Karst Rivers of the Southeast Black Sea Basin (Croatia), and Antimicrobial Susceptibility of Aeromonas Isolates. Curr Microbiol (2020). https://doi.org/10.1007/s00284-020-02081-5

Download citation