Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Associated with Nosocomial Infection in the Pelotas, RS, Brazil


Acinetobacter calcoaceticus–Acinetobacter baumannii complex (ACB) comprises some opportunistic pathogens associated with infectious outbreaks in hospital settings. A. baumannii is the most relevant species owing to its capacity to develop resistance to the different classes of antimicrobials. The aim of this study was to identify the species, establish the genetic patterns, resistance and biofilm profiles in ACB isolates associated with nosocomial infection in a hospital of Pelotas, Rio Grande do Sul, Brazil. Twenty-two clinical isolates were characterized at the species level through multiplex polymerase chain reaction (PCR) for the gyrB and blaOXA51-like genes, and the genetic relationship was determined through pulsed-field gel electrophoresis (PFGE). Their antibiotic resistance profiles and carbapenemases synthesis were evaluated following CLSI guidelines. PCR was carried out to evaluate the presence of carbapenemases genes and the isolates were classified for their biofilm-forming ability. All isolates obtained in the study were identified as A. baumannii and 72.7% of the isolates were classified as strong biofilm formers. In the class carbapenems, 95.4% and 77.3% of the isolates were resistant to meropenem and imipenem, respectively. The blaVIM gene was identified in 90.9% of isolates and carbapenemases synthesis were confirmed in 95.4% of the isolates. Fourteen genetic patterns were confirmed through PFGE analyses. The isolates collected within a time gap of 2 years demonstrated a genetic relationship, and the same clone was identified in different departments in the hospital. To the best of our knowledge, this is the first report of identification and characterization of A. baumannii nosocomial isolates in Pelotas, RS, Brazil.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Martins AF, Barth AL (2013) Acinetobacter multirresistente—um desafio para a saúde pública. Scientia Medica 23:56–62

    Article  Google Scholar 

  2. 2.

    Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Harding CM, Hennon SW, Feldman MF (2017) Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 16:91–102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chen TL, Lee YT, Kuo SC, Yang SP, Fung CP, Lee SD (2014) Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay. J Med Microbiol 63:1154–1159.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Higgins PG, Lehmann M, Wisplinghoff H, Seifert H (2010) gyrB multiplex PCR to differentiate between Acinetobacter calcoaceticus and Acinetobacter genomic species 3. J Clin Microbiol 48:4592–4594.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Alcántar-Curiel MD, García-Torres LF, González-Chávez MI, Morfín-Otero R et al (2014) Molecular mechanisms associated with nosocomial carbapenem-resistant Acinetobacter baumannii in Mexico. Arch Med Res 45:553–560.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    de Campos PA, Royer S, Batistão DW, Araújo BF, Queiroz LL, de Brito CS, Gontijo-Filho PP, Ribas RM (2016) Multidrug resistance related to biofilm formation in Acinetobacter baumannii and Klebsiella pneumoniae clinical strains from different pulsotypes. Curr Microbiol 72:617–627.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Rodríguez CH, Nastro M, Famiglietti A (2018) Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Rev Argent Microbiol 50:327–333.

    Article  PubMed  Google Scholar 

  9. 9.

    Turton JF, Woodford N, Glover J, Yard S, Kaufmann ME, Pitt TL (2006) Identification of Acinetobacter baumannii by detection of the bla OXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 44:2974–2976.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wang J, Ruan Z, Feng Y, Fu Y, Jiang Y, Wang H, Yu Y (2014) Species distribution of clinical Acinetobacter isolates revealed by different identification techniques. PLoS ONE 9:1–7.

    CAS  Article  Google Scholar 

  11. 11.

    Babapour E, Haddadi A, Mirnejad R, Angaji SA, Amirmozafari N (2016) Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance. Asian Pac J Trop Biomed 6:528–533.

    Article  Google Scholar 

  12. 12.

    Li XM, Choi JA, Choi IS, Kook JK, Chang YH, Park G, Jang SJ, Kang SH, Moon DS (2016) Development and evaluation of species-specific PCR for detection of nine Acinetobacter species. Ann Clin Lab Sci 46:270–278

    CAS  PubMed  Google Scholar 

  13. 13.

    Lee MJ, Jang SJ, Li XM, Park G, Kook K, Kim MJ, Chang YH, Shin JH, Kim SH, Kim DM, Kang SH, Moon DS (2014) Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates. Diagn Microbiol Infect Dis 78:29–34.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Higgins PG, Wisplinghoff H, Seifert H (2007) A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU. Clin Microbiol Infect 13:1199–1201.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Chang HC, Wei YF, Dijkshoorn L, Vaneechoutte M, Tang CT, Chang TC (2005) Species-level identification of isolates of the Acinetobacter calcoaceticusAcinetobacter baumannii complex by sequence analysis of the 16S–23S rRNA gene spacer region. J Clin Microbiol 43:1632–1639.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Clinical and Laboratory Standards Institute (2017) M100—performance standards for antimicrobial susceptibility testing. Accesed 12 Nov 2018

  18. 18.

    Carvalho KR (2013) Estudo da diversidade genética, caracterização fenotípica e molecular de mecanismos de resistência a antimicrobianos e virulência em Acinetobacter baumannii isolados em hospitais do Rio de Janeiro. Tese, Fundação Oswaldo Cruz, Rio de Janeiro

    Google Scholar 

  19. 19.

    Segal H, Garny S, Elisha BG (2005) Is IS ABA—1 customized for Acinetobacter ? FEMS Microbiol Lett 243:425–429.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ellington MJ, Kistler J, Livermore DM, Woodford N (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 59:321–322.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Seifert H, Dolzani L, Bressan R, van der Reijden T, van Strijen B, Stefanik D, Heersma H, Dijkshoorn L (2005) Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol 43:4328–4335.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, Wrigley D, Barret T, Ribot E (2005) Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 43:1045–1050.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899.

    Article  PubMed  Google Scholar 

  25. 25.

    Rosales-Reyes R, Gayosso-Vázquez C, Fernández-Vázquez JL, Jarillo-Quijada MD, Rivera-Benítez C, Santos-Preciado JI, Alcántar-Curiel MD (2017) Virulence profiles and innate immune responses against highly lethal, multidrug- resistant nosocomial isolates of Acinetobacter baumannii from a tertiary care hospital in Mexico. PLoS ONE 12:1–16.

    CAS  Article  Google Scholar 

  26. 26.

    Lee CR, Lee JH, Park M, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH (2017) Biology of Acinetobacter baumannii : pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 13:7–55.

    CAS  Article  Google Scholar 

  27. 27.

    Teixeira AB, Barin J, Hermes DM, Barth AL, Martins AF (2017) PCR assay based on the gyr B gene for rapid identification of Acinetobacter baumannii-calcoaceticus complex at specie level. J Clin Lab Anal 31:e22046.

    CAS  Article  Google Scholar 

  28. 28.

    Rios VM, Almeida MTG (no date) Carbapenemases: um problema em evolução. Ciencia News. Accessed 15 Nov 2018

  29. 29.

    Vieira PB, Picoli SU (2015) Acinetobacter baumannii multirresistente: aspectos clínicos e epidemiológicos. Rev Bras de Ciências da Saúde 19:151–156.

    Article  Google Scholar 

  30. 30.

    Kanafani ZA, Kanj SS (2018) Acinetobacter infection: treatment and prevention. Up to Date. Accessed 15 Nov 2018

  31. 31.

    Rocha L, Pagano M, Campos JC, Sampaio JLM, Martins AF, Barth AL (2017) Carbapenem-resistant Acinetobacter baumannii in Brazil: susceptibility profile and diversity of oxacillinases. J Bras Patol Med Lab 53:358–361.

    CAS  Article  Google Scholar 

  32. 32.

    Ferreira AE, Marchetti DP, de Oliveira LM, Gusatti CS, Fuentefria DB, Corção G (2011) Presence of OXA-23-producing isolates of Acinetobacter baumannii in wastewater from hospitals in southern Brazil. Microb Drug Resist 17:221–227.

    CAS  Article  PubMed  Google Scholar 

Download references


We thank the Laboratory of Microbiology, School Hospital, Federal University of Pelotas (UFPel, Pelotas, RS, Brazil) for their collaboration and providing the isolates.


This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES,—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, which provided research (DDH and FRC) and scholarship (BCR, CMJ, MRAF, SBF, and SCA).

Author information



Corresponding author

Correspondence to Daiane Drawanz Hartwig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Freitas, S.B., Amaral, S.C., Ferreira, M.R.A. et al. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Associated with Nosocomial Infection in the Pelotas, RS, Brazil. Curr Microbiol (2020).

Download citation