Skip to main content
Log in

Lactic Acid Produced by Glycolysis Contributed to Staphylococcus aureus Aggregation Induced by Glucose

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

High concentration of glucose induces Staphylococcus aureus (S. aureus) aggregation, but the mechanism of this is still unclear. In this study, the aggregation of S. aureus strains was induced by high concentration of glucose (>7.8 mM), and which was dose- and time-dependent. In addition, the large amount of lactate acid produced during S. aureus aggregation, induced by glucose, resulted in decreased pH value. Lactic acid, the end product of glycolysis, could quickly induce S. aureus aggregation. Except for lactic acid, acetic acid and HCl also induced S. aureus aggregation. In addition, the aggregation of S. aureus strains induced by glucose or lactic acid was completely inhibited in Tris–HCl buffer (pH 7.5), and inhibition of glycolysis by 2-deoxyglucose significantly decreased S. aureus aggregation. The aggregation induced by glucose was dispersed by periodate and proteinase K. In summary, lactate acid produced by glycolysis contributed to S. aureus aggregation induced by high concentration of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532. https://doi.org/10.1056/NEJM199808203390806

    Article  CAS  PubMed  Google Scholar 

  2. Perez K, Patel R (2015) Biofilm-like aggregation of Staphylococcus epidermidis in synovial fluid. J Infect Dis 212(2):335–336. https://doi.org/10.1093/infdis/jiv096

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dastgheyb S, Parvizi J, Shapiro IM, Hickok NJ, Otto M (2015) Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J Infect Dis 211(4):641–650. https://doi.org/10.1093/infdis/jiu514

    Article  CAS  PubMed  Google Scholar 

  4. Crosby HA, Kwiecinski J, Horswill AR (2016) Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions. Adv Appl Microbiol 96:1–41. https://doi.org/10.1016/bs.aambs.2016.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplan JB, Izano EA, Gopal P, Karwacki MT, Kim S, Bose JL, Bayles KW, Horswill AR (2012) Low levels of beta-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. MBio 3(4):e00198–e00112. https://doi.org/10.1128/mBio.00198-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen C, Krishnan V, Macon K, Manne K, Narayana SV, Schneewind O (2013) Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus. J Biol Chem 288(41):29440–29452. https://doi.org/10.1074/jbc.M113.502039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwiecinski J, Kahlmeter G, Jin T (2015) Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections. Curr Microbiol 70(5):698–703. https://doi.org/10.1007/s00284-014-0770-x

    Article  CAS  PubMed  Google Scholar 

  8. Hook JL, Islam MN, Parker D, Prince AS, Bhattacharya S, Bhattacharya J (2018) Disruption of staphylococcal aggregation protects against lethal lung injury. J Clin Invest 128(3):1074–1086. https://doi.org/10.1172/JCI95823

    Article  PubMed  PubMed Central  Google Scholar 

  9. McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM (2011) Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 7(10):e1002307. https://doi.org/10.1371/journal.ppat.1002307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conlon KM, Humphreys H, O’Gara JP (2002) icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184(16):4400–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183(8):2624–2633. https://doi.org/10.1128/JB.183.8.2624-2633.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cramton SE, Ulrich M, Gotz F, Doring G (2001) Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 69(6):4079–4085. https://doi.org/10.1128/IAI.69.6.4079-4085.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim Y, Jana M, Luong TT, Lee CY (2004) Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J Bacteriol 186(3):722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seidl K, Muller S, Francois P, Kriebitzsch C, Schrenzel J, Engelmann S, Bischoff M, Berger-Bachi B (2009) Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol 9:95. https://doi.org/10.1186/1471-2180-9-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuchs S, Pane-Farre J, Kohler C, Hecker M, Engelmann S (2007) Anaerobic gene expression in Staphylococcus aureus. J Bacteriol 189(11):4275–4289. https://doi.org/10.1128/JB.00081-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Favre-Bonte S, Kohler T, Van Delden C (2003) Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52(4):598–604. https://doi.org/10.1093/jac/dkg397

    Article  CAS  PubMed  Google Scholar 

  17. Kanafani ZA, Kourany WM, Fowler VG Jr, Levine DP, Vigliani GA, Campion M, Katz DE, Corey GR, Boucher HW (2009) Clinical characteristics and outcomes of diabetic patients with Staphylococcus aureus bacteremia and endocarditis. Eur J Clin Microbiol Infect Dis 28(12):1477–1482. https://doi.org/10.1007/s10096-009-0808-3

    Article  CAS  PubMed  Google Scholar 

  18. Baker EH, Janaway CH, Philips BJ, Brennan AL, Baines DL, Wood DM, Jones PW (2006) Hyperglycaemia is associated with poor outcomes in patients admitted to hospital with acute exacerbations of chronic obstructive pulmonary disease. Thorax 61(4):284–289. https://doi.org/10.1136/thx.2005.051029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farnsworth CW, Schott EM, Jensen SE, Zukoski J, Benvie AM, Refaai MA, Kates SL, Schwarz EM, Zuscik MJ, Gill SR, Mooney RA (2017) Adaptive upregulation of clumping factor A (ClfA) by Staphylococcus aureus in the obese, Type 2 diabetic host mediates increased virulence. Infect Immun. https://doi.org/10.1128/IAI.01005-16

    Article  PubMed  PubMed Central  Google Scholar 

  20. Waldrop R, McLaren A, Calara F, McLemore R (2014) Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res 472(11):3305–3310. https://doi.org/10.1007/s11999-014-3538-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haaber J, Cohn MT, Frees D, Andersen TJ, Ingmer H (2012) Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS ONE 7(7):e41075. https://doi.org/10.1371/journal.pone.0041075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seidl K, Goerke C, Wolz C, Mack D, Berger-Bachi B, Bischoff M (2008) Staphylococcus aureus CcpA affects biofilm formation. Infect Immun 76(5):2044–2050. https://doi.org/10.1128/IAI.00035-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palmqvist N, Patti JM, Tarkowski A, Josefsson E (2004) Expression of staphylococcal clumping factor A impedes macrophage phagocytosis. Microbes Infect 6(2):188–195. https://doi.org/10.1016/j.micinf.2003.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University (Grant No. JY201713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Chen, M., Chen, T. et al. Lactic Acid Produced by Glycolysis Contributed to Staphylococcus aureus Aggregation Induced by Glucose. Curr Microbiol 76, 607–612 (2019). https://doi.org/10.1007/s00284-019-01666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01666-z

Navigation