Skip to main content
Log in

Volatile Compounds Produced by Cyanobacteria Isolated from Mangrove Environment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacterial communities from the Brazilian Atlantic coast have been recently sampled through cultured and non-cultured approaches. The maintenance of cyanobacterial strains in laboratory cultures is an important source of material for biological and chemical evaluation as well as biotechnological investigations. In this way, this work aimed to identify, for the first time, by means of GC–MS analyses, the nonpolar chemical profiles of four morphologically distinct cyanobacterial strains: Cyanobium sp. CENA178, Cyanobium sp. CENA181, Oxynema sp. CENA135 and Nostoc sp. CENA175, which were previously isolated from Brazilian mangroves. Six distinct classes of volatile compounds were identified: acids, alcohols, fatty aldehydes, esters, ketones and aliphatic hydrocarbons, from which 12 compounds were detected. The predominant compounds were 1-octadecyne and tetradecanoic acid, obtained from Oxynema sp. CENA135 and; the last one being also observed in Cyanobium sp. CENA181. In addition, the aliphatic hydrocarbon heptadecane was produced by these cyanobacterial strains as well as by Nostoc sp. CENA175. The compounds produced by the studied cyanobacteria have already been reported as possessing pharmaceutical properties such as antioxidant, cytotoxic and antimicrobial activities, besides industrial importance as source of intermediates for biofuel production. It is also important to mention that, considering the number of non-identified compounds, which were not compatible with the searched databases, these strains are promising sources of new compounds, denoting the need for more studies. Accordingly, since these strains were isolated from saline or brackish waters, it is also expected that they might be cultivated in waters not used for human consumption, enabling a low-cost approach for biomass and metabolites production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ministério do Meio Ambiente (MMA)- Ministry of Environment. Zona costeira e marinha (2018) http://www.mma.gov.br/biodiversidade/biodiversidade-aquatica/zona-costeira-e-marinha. Accessed 27 Oct 2018

  2. Cunha-Lignon M, Menghini RP, Santos LCM, Niemeyer-Dinola C, Schaeffer-Novelli Y (2009) Case studies in the mangroves of the State of São Paulo (Brazil): application of tools with different spatial and temporal scale. J Integr Coast Zone Manag 9:79–91

    Google Scholar 

  3. Schaeffer-Novelli Y, Cintrón-Molero G, Soares MLG, De-Rosa T (2000) Brazilian mangroves. Aquat Ecosyst Health Manage 3:561–570. https://doi.org/10.1016/S1463-4988(00)00052-X

    Article  Google Scholar 

  4. Silva CSP, Genuário DB, Vaz MGMV, Fiore MF (2014) Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 37:100–112. https://doi.org/10.1016/j.syapm.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  5. Governo do estado de São Paulo (2018) Litoral de SP tem mais de 600 km de extensão banhados pelo Atlântico. http://www.saopaulo.sp.gov.br/spnoticias/ultimas-noticias/litoral-de-sp-tem-mais-de-600-km-de-extensao-banhados-pelo-atlantico/. Accessed 27 Oct 2018

  6. Engene N, Cameron Coates R, Gerwick WH (2010) 16S rRna gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46:591–601. https://doi.org/10.1111/j.1529-8817.2010.00840.x

    Article  CAS  Google Scholar 

  7. Oscillatoriales (2013) Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. Cyanoprokaryota) J Phycol 49:1095–1106. https://doi.org/10.1111/jpy.12115 nov.

    Article  Google Scholar 

  8. Seymour JR (2014) A sea of microbes: the diversity and activity of marine microorganisms. Microbiol Aust 183–187. https://doi.org/10.1071/MA14060

  9. Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9(1):e85140. https://doi.org/10.1371/journal.pone.0085140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lea-Smith DJ, Ortiz-Suarez ML, Lenn T, Nümberg DJ, Baers LL, Davey MP, Parolini L, Huber RG, Cotton CAR, Mastroianni G, Bombelli P, Ungerer P, Stevens TJ, Smith AG, Bond PJ, Mullineaux CW, Howe CJ (2016) Hydrocarbons are essential for optimal cell size, division and growth of cyanobacteria. Plant Physiol 172:1928–1940. https://doi.org/10.1104/pp.16.01205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sorigué D, Légeret B, Cuiné S, Morales P, Mirabella B, Geneviève G, Li-Beisson Y, Jetter R, Peltier G, Beisson F (2016) Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol 171(4):2393–2395. https://doi.org/10.1104/pp.16.00462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu A, Zhu T, Lu X, Song L (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393. https://doi.org/10.1016/j.apenergy.2013.05.008

    Article  CAS  Google Scholar 

  13. Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2014) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99:1521–1529. https://doi.org/10.1007/s00253-014-6286-2

    Article  CAS  PubMed  Google Scholar 

  14. Angermayr SA, Rovira AG, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33:352–361. https://doi.org/10.1016/j.tibtech.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  15. Gao X, Sun T, Pei G, Pei G, Chen L, Zhang W (2016) Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol 100:3401–3413. https://doi.org/10.1007/s00253-016-7374-2

    Article  CAS  PubMed  Google Scholar 

  16. Heimann K (2016) Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production. Curr Opin Biotechnol 38:183–189. https://doi.org/10.1016/j.copbio.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  17. Brito Â, Ramos V, Mota R et al (2017) Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Mol Phylogenet Evol. https://doi.org/10.1016/j.ympev.2017.03.006

    Article  PubMed  Google Scholar 

  18. Caires TA, de Mattos Lyra G, Hentschke GS, de Gusmão Pedrini A, Sant’Anna CL, de Castro Nunes JM (2017) Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): A new filamentous benthic marine taxon widely distributed along the Brazilian coast. Mol Phylogenet Evol 120:196–211. https://doi.org/10.1016/j.ympev.2017.12.009

    Article  PubMed  Google Scholar 

  19. Caires TA, da Silva AMS, Vasconcelos VM, Affe HMJ, de Souza Neta LC, Boness HVM, Sant’Anna CL, Nunes JMC (2018) Biotechnological potential of Neolyngbya (Cyanobacteria), a new marine benthic filamentous genus from Brazil. Algal Res 36:1–9. https://doi.org/10.1016/j.algal.2018.10.001

    Article  Google Scholar 

  20. Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani. and Botrytis cinerea. Biol Control 105:27–39. https://doi.org/10.1016/j.biocontrol.2016.11.007

    Article  Google Scholar 

  21. Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69. https://doi.org/10.1186/1754-6834-6-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silva-Stenico ME, Vieira FDP, Genuário DB, Silva CSP, Moraes LAB, Fiore MF (2012) Decolorization of textile dyes by cyanobacteria. J Braz Chem Soc 23(10):1863–1870. https://doi.org/10.1590/S0103-50532012005000058

    Article  CAS  Google Scholar 

  23. Naman CB, Rattan R, Nikoulina SE, Lee J, Miller BW, Moss NA, Armstrong L, Boudreau PD, Debonsi HM, Valeriote FA, Dorrestein PC, Gerwick WH (2017) Integrating molecular networking and biological assays to target the isolation of a cytotoxic cyclic octapeptide, samoamide A, from an American Samoan marine cyanobacterium. J Nat Prod 80(3):625–633. https://doi.org/10.1021/acs.jnatprod.6b00907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans WG (1994) Volatile organic chemicals of a shore-dwelling cyanobacterial mat community. J Chem Ecol. https://doi.org/10.1007/BF02064432

    Article  PubMed  Google Scholar 

  25. Samejo Q, Memon S, Bangher MI, Khan KM (2013) Essential oil constituents in fruit and stem of Calligonum polygonoides. Ind Crops Prod 45:293–295. https://doi.org/10.1016/j.indcrop.2013.01.001

    Article  CAS  Google Scholar 

  26. Fröhlich O, Schreier P (1990) Volatile Constituents of Loquat (Eriobotrya japonica Lindl.) Fruit. J Food Sci 55(1):176–180. https://doi.org/10.1111/j.1365-2621.1990.tb06046.x

    Article  Google Scholar 

  27. de Oliveira ALL, da Silva DB, Turatti ICC, Yokoya NS, Debonsi HM (2009) Volatile constituents of Brazilian Bostrychia species (Rhodomelaceae) from mangrove and rocky shore. Biochem Syst Ecol 37:761–765. https://doi.org/10.1016/j.bse.2009.11.004

    Article  CAS  Google Scholar 

  28. Adams RP (1995) Identification of Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Publ. Corp., Carol Stream

    Google Scholar 

  29. Dembitskiĭ VM, Dor I, Shkrob I, Aki M (2001) Branched Alkanes and Other Apolar Compounds Produced by the Cyanobacterium Microcoleus vaginatus from the Negev Desert. Russ J Bioorganic Chem 27:130–140. https://doi.org/10.1023/A:1011385220331

    Article  Google Scholar 

  30. Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17:462–471. https://doi.org/10.1016/j.cbpa.2013.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56. https://doi.org/10.1016/j.jbiotec.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  32. Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8: https://doi.org/10.3389/fmicb.2017.00515

  33. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Steen TS, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381. https://doi.org/10.1016/j.tibtech.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  34. E4tech, Re-CORD and WUR (UK) Ltd (2015) From the Sugar Platform to biofuels and biochemical, Report ENER/C2/423–2012/ SI2.673791, European Commission Directorate-General Energy

  35. Zhai C, Song S, Zou S, Liu C, Xue Y (2013) The mechanism of competition between two bloom-forming Microcystis species. Freshw Biol 58:1831–1839. https://doi.org/10.1111/fwb.12172

    Article  CAS  Google Scholar 

  36. Padmavathi AR, Abinaya B, Pandian SK (2014) Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:9: 1111–1122. https://doi.org/10.1016/j.biomag.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  37. Rangel-Sánchez G, Castro-Mercado E, García-Pineda E (2014) Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. J Plant Physiol 2014:189–198. https://doi.org/10.1016/j.jplph.2013.07.004

    Article  CAS  Google Scholar 

  38. Oliver NJ, Rabinovitch-Deere CA, Carroll AL et al (2016) Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol 35:43–50. https://doi.org/10.1016/j.cbpa.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  39. Islam MT, de Alencar MVOB, Machado KC, Machado KC, Melo-Cavalcante AAC, Sousa DP, de Freitas RM (2015) Phytol in a pharma-medico-stance. Chem Biol Interact 240:60–73. https://doi.org/10.1016/j.cbi.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  40. Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22. https://doi.org/10.1016/j.plantsci.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  41. Knoot CJ, Ungerer JL, Wangikar PP, Pakrasi HB (2017) Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem. https://doi.org/10.1074/jbc.R117.815886

    Article  PubMed  PubMed Central  Google Scholar 

  42. Costa JP, De Oliveira GA, de Almeida AA, Islam MT, De Sousa DP, de Freitas RM (2014) Anxiolytic-like effects of phytol: possible involvement of GABAergic transmission. Brain Res 1547:34–42. https://doi.org/10.1016/j.brainres.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  43. de Felício R, de Albuquerque S, Young MCM et al (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769. https://doi.org/10.1016/j.jpba.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  44. vom Dorp K, Hölzl G, Plohmann C, Eisenhut M, Abraham M, Weber APM, Dörmann P (2015) Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of arabidopsis. Plant Cell 27(10):2836–2859. https://doi.org/10.1105/tpc.15.00395

    Article  CAS  Google Scholar 

  45. de Moraes J, de Oliveira RN, Costa JP, Junior ALG, de Sousa DP, Freitas RM, Pinto PLS (2014) Phytol, a Diterpene Alcohol from Chlorophyll, as a Drug against Neglected Tropical Disease Schistosomiasis mansoni. PLoS Negl Trop Dis 8(1):51. https://doi.org/10.1371/journal.pntd.0002617

    Article  CAS  Google Scholar 

  46. Zeinalian R, Farhangi MA, Shariat A, Saghafi-Asl M (2017) The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complement Altern Med 17(1):225. https://doi.org/10.1186/s12906-017-1670-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdel-Hafez SII, Abo-Elyousr KAM, Abdel-Rahim IR (2015) Fungicidal activity of extracellular products of cyanobacteria against Alternaria porri. Eur J Phycol 50:239–245. https://doi.org/10.1080/09670262.2015.1028105

    Article  CAS  Google Scholar 

  48. Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phyther Res 18:754–757. https://doi.org/10.1002/ptr.1541

    Article  CAS  Google Scholar 

  49. Pejin B, Savic A, Sokovic M, Glamoclija J, Ciric A, Nikolic M, Radotic K, Mojovic M (2014) Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat Prod Res 28:6:372–376. https://doi.org/10.1080/14786419.2013.869692

    Article  CAS  Google Scholar 

  50. Inoue Y, Hada T, Shiraishi A, Hirose K, Hamashima H, Kobayashi S (2005) Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus. Antimicrob Agents Chemother 49:1770–1774. https://doi.org/10.1128/AAC.49.5.1770-1774.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103. https://doi.org/10.1016/j.tibtech.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  52. Lea-Smith DJ, Howe CJ (2017) The use of cyanobacteria for biofuel production. In: Love J, Bryant JA. Biofuels, Bioenergy, Wiley, Chichester. https://doi.org/10.1002/9781118350553.ch9

    Chapter  Google Scholar 

  53. Kaiser BK, Carleton M, Hickman JW, Miller C, Lawson D, Budde M, Warrener P, Paredes A, Mullapadi S, Navarro P, Croos F, Roberts JM (2013) Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS ONE. https://doi.org/10.1371/journal.pone.0058307

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)-Prospects and challenges. Algal Res 2:79–97. https://doi.org/10.1016/j.algal.2013.01.006

    Article  Google Scholar 

  55. Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Sepulveda BMP, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112(44):13591–13596. https://doi.org/10.1073/pnas.1507274112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Milovanović I, Mišan A, Simeunović J, Kovaĉ D, Jambrec D, Mandić A (2015) Determination of volatile organic compounds in selected strains of cyanobacteria. J Chem. https://doi.org/10.1155/2015/969542

    Article  Google Scholar 

  57. Tellez MR, Schrader KK, Kobaisy M (2001) Volatile components of the cyanobacterium Oscillatoria perornata (Skuja). J Agric Food Chem 49:5989–5992. https://doi.org/10.1021/jf010722p

    Article  CAS  PubMed  Google Scholar 

  58. Santos AB, Fernandes AS, Wagner R, Jacob-Lopes E, Zepka LQ (2016) Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. J Appl Phycol 28:1561–1570. https://doi.org/10.1007/s10811-015-0740-0

    Article  CAS  Google Scholar 

  59. Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49(5):1227–1239. https://doi.org/10.1016/S0031-9422(97)00943-6

    Article  CAS  PubMed  Google Scholar 

  60. Guan W, Zhao H, Lu X, Wang C, Yang M, Bai F (2011) Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry. J Chromatogr A 1218:8289–8293. https://doi.org/10.1016/j.chroma.2011.09.043

    Article  CAS  PubMed  Google Scholar 

  61. Ríos V, Prieto AI, Cameán AM, Gonz (2014) Detection of cylindrospermopsin toxin markers in cyanobacterial algal blooms using analytical pyrolysis (Py-GC/MS) and thermally-assisted hydrolysis and methylation (TCh-GC/MS). Chemosphere 108:175–182. https://doi.org/10.1016/j.chemosphere.2014.01.033

    Article  CAS  PubMed  Google Scholar 

  62. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833. https://doi.org/10.1016/j.chembiol.2004.03.030

    Article  CAS  PubMed  Google Scholar 

  63. Zhu X, Su M, Manickam K, Zhang W (2015) Bacterial Genome mining of enzymatic tools for alkyne biosynthesis. ACS Chem Biol 10:2785–2793. https://doi.org/10.1021/acschembio.5b00641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Caires TA, Sant’anna CL, Nunes JMC (2013) A new species of marine benthic cyanobacteria from the infra littoral of Brazil: Symploca infralitotalis sp. nov. Braz J Bot 36(2):159–163. https://doi.org/10.1007/s40415-013-0017-2

    Article  Google Scholar 

  65. Genuário DB, Vieira Vaz MGM, Hentschke GS, Sant’Anna CL, Fiore MF (2015) Halotia gen. Nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 65:633–675. https://doi.org/10.1099/ijs.0.070078-0

    Article  CAS  Google Scholar 

  66. Silva-Stenico ME, Kaneno R, Zambuzi FA, Vaz MGMV, Alvarenga DO, Fiore MF (2013) Natural products from cyanobacteria with antimicrobial and antitumor activity. Curr Pharm Biotechnol 14:820–828. https://doi.org/10.2174/1389201014666131227114846

    Article  CAS  PubMed  Google Scholar 

  67. Da Rós PCM, Silva CSP, Silva-Estenico ME, Fiore MF, De Castro HF (2013) Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production. Marine Drugs 11:2365–2381. https://doi.org/10.3390/md11072365

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.A. was supported by the Brazilian National Council for Scientific and Technological Development for a doctoral scholarship (CNPq 140090/2013-4). M.G.M.V.V. was supported by post-doctoral scholarships from CAPES/FAPEMIG (BPD-00514-14) and from CAPES (PNPD-1638006). This work was supported by grant 2011/50836-2 from the State of São Paulo Research Foundation (FAPESP). We thank Izabel Cristina Casanova Turatti (Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP) for operating the GC-MS and Dr. Norberto Peporine Lopes (FCFRP-USP) for providing available equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosana Maria Debonsi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 607 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, L., Vaz, M.G.M.V., Genuário, D.B. et al. Volatile Compounds Produced by Cyanobacteria Isolated from Mangrove Environment. Curr Microbiol 76, 575–582 (2019). https://doi.org/10.1007/s00284-019-01658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01658-z

Navigation