Skip to main content
Log in

Complete Genome Sequence of Streptomyces olivoreticuli ATCC 31159 Which can Produce Anticancer Bestatin and Show Diverse Secondary Metabolic Potentials

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Because of its competitive inhibitor activity against aminopeptidase B, bestatin isolated from the broth of Streptomyces olivoreticuli ATCC 31159 is famous and currently used as an approved therapeutic agent for cancer and bacterial infections. It can be used alone or in combination with other antibiotics or anticancer drugs as adjuvant therapy drug for chemotherapy and radiotherapy. Due to the therapeutic importance of bestatin, mining of its biosynthetic mechanism is imperative. Genome mining, one of the bioinformatics-based approaches for the discovery of novel natural product, has been developed and applied widely. Herein, we reported the complete genome of Streptomyces olivoreticuli ATCC 31159 obtained from American Type Culture Collection (ATCC). It consists of 8,809,793 base pairs with a linear chromosome, GC content of 71.1%, 7520 protein-coding genes, 75 tRNA operons, 21 rRNA operons, 63 sRNAs. In addition, predictive analysis showed that at least 37 putative biosynthetic gene clusters (BGCs) of the secondary metabolites were obtained, 18 new BGCs with low similarity (< 25%) were included. The availability of novel and abundant gene clusters not only will provide clues for cracking the biosynthetic mechanism of bestatin, but also will provide valuable insight for mining the diverse bioactive compounds based on rational strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Solanki R, Khanna M, Lal R (2008) Bioactive compounds from marine actinomycetes. Indian J Microbiol 48(4):410–431

    Article  CAS  PubMed  Google Scholar 

  2. Niu G (2018) Genomics-driven natural product discovery in Actinomycetes. Trends Biotechnol 36(3):238–241

    Article  CAS  PubMed  Google Scholar 

  3. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  4. Shang S, Willems AV, Chauhan SS (2018) A practical diastereoselective synthesis of (–)-bestatin. J Pept Sci 24(3):e3067

    Article  CAS  Google Scholar 

  5. Umezawa H (2014) Small molecular immunomodifiers of microbial origin: fundamental and clinical studies of bestatin. Institute of Microbial Chemistry, Tokyo

    Google Scholar 

  6. Wang L, Wang C, Jia Y, Liu Z, Shu X, Liu K (2016) Resveratrol increases anti-proliferative activity of bestatin through downregulating P-glycoprotein expression via inhibiting PI3K/Akt/mTOR pathway in K562/ADR cells. J Cell Biochem 117(5):1233–1239

    Article  CAS  PubMed  Google Scholar 

  7. DeCorte BL (2016) Underexplored opportunities for natural products in drug discovery: miniperspective. J Med Chem 59(20):9295–9304

    Article  CAS  PubMed  Google Scholar 

  8. Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43(2–3):155–176

    Article  CAS  PubMed  Google Scholar 

  9. Cox G, Sieron A, King AM, De Pascale G, Pawlowski AC, Koteva K, Wright GD (2017) A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem Biol 24(1):98–109

    Article  CAS  PubMed  Google Scholar 

  10. Hebert PD, Braukmann TW, Prosser SW, Ratnasingham S, Ivanova NV, Janzen DH, Hallwachs W, Naik S, Sones JE, Zakharov EV (2018) A sequel to sanger: amplicon sequencing that scales. BMC Genom 19(1):219

    Article  CAS  Google Scholar 

  11. Mardis ER (2017) DNA sequencing technologies: 2006–2016. Nat Protoc 12(2):213

    Article  CAS  PubMed  Google Scholar 

  12. Ardui S, Ameur A, Vermeesch JR, Hestand MS (2018) Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 46(5):2159–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reiner J, Pisani L, Qiao W, Singh R, Yang Y, Shi L, Khan WA, Sebra R, Cohen N, Babu A (2018) Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet–Biedl Syndrome 9 (BBS9) deletion. NPJ Genom Med 3(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR (2008) Rfam: updates to the RNA families database. Nucleic Acids Res 37:136–140

    Article  CAS  Google Scholar 

  18. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25(10):1335–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsiao W, Wan I, Jones SJ, Brinkman FS (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3):418–420

    Article  PubMed  Google Scholar 

  20. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:347–352

    Article  CAS  Google Scholar 

  21. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:52–57

    Article  Google Scholar 

  22. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:277–280

    Article  CAS  Google Scholar 

  23. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:354–357

    Article  CAS  Google Scholar 

  24. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2014) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43(D1):261–269

    Article  CAS  Google Scholar 

  25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, De Los Santos EL, Kim HU, Nave M (2017) antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45(W1):36–41

    Article  CAS  Google Scholar 

  27. Hemphill CFP, Sureechatchaiyan P, Kassack MU, Orfali RS, Lin W, Daletos G, Proksch P (2017) OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J Antibiot 70(6):726

    Article  CAS  Google Scholar 

  28. Li L, Jiang W, Lu Y (2017) New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol Adv 35(8):936–949

    Article  CAS  PubMed  Google Scholar 

  29. Ren H, Wang B, Zhao H (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Science & Technology Development Foundation of the University of Tianjin Municipal City: Directional excavating of the novel lantibiotics and its activities of inhibiting food spoilage (Grant No. 20170619); Innovation Team Project for Colleges and Universities in Tianjin city: Study on New Technology and Related Mechanism of Processing and Storage of Agricultural Products (Grant No. TD13-5087); National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 201710069036) and the Breeding Project of National Natural Science Fund of China (Grant No. 17103-60104-2017ZT010503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Yu Zhang or Su Ying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H.Y., Xie, Z.P., Lou, T.T. et al. Complete Genome Sequence of Streptomyces olivoreticuli ATCC 31159 Which can Produce Anticancer Bestatin and Show Diverse Secondary Metabolic Potentials. Curr Microbiol 76, 370–375 (2019). https://doi.org/10.1007/s00284-019-01638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01638-3

Navigation