Skip to main content
Log in

Transcriptome-Based Identification of a Strong Promoter for Hyper-production of Natamycin in Streptomyces

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Streptomyces are famed producers of secondary metabolites with diverse bioactivities and structures. However, biosynthesis of natural products will consume vast precursors from primary metabolism, and some secondary metabolites are toxic to the hosts. To overcome this circumstance and over-produce secondary metabolites, one of the strategies is to over-express biosynthetic genes under strong promoters specifically expressed during secondary metabolism. For this purpose, here based on Microarray and eGFP reporter assays, we obtained a promoter thlM4p, whose activity was undetectable in the first 2 days of fermentation, but sevenfold higher than the strong promoter ermE*p in the following days. Moreover, when the positive regulator gene scnRII was driven from thlM4p, natamycin yield increased 30% compared to ermE*p. Therefore, we provide a new way to identify promoters, which is silenced during primary metabolism while strongly expressed under secondary metabolism of Streptomyces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  CAS  PubMed  Google Scholar 

  2. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106

    Article  CAS  PubMed  Google Scholar 

  4. Wang WS, Li X, Wang J, Xiang SH, Feng XZ, Yang KQ (2013) An engineered strong promoter for Streptomycetes. Appl Environ Microbiol 79:4484–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Labes G, Bibb M, Wohlleben W (1997) Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn1696 as reporter. Microbiology 143:1503–1512

    Article  CAS  PubMed  Google Scholar 

  6. Cui H, Ni X, Shao W, Su J, Su J, Ren J, Xia H (2015) Functional manipulations of the tetramycin positive regulatory gene ttmRIV to enhance the production of tetramycin A and nystatin A1 in Streptomyces ahygroscopicus. J Ind Microbiol Biotechnol 42:1273–1282

    Article  CAS  PubMed  Google Scholar 

  7. Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J, Lou C, Zhang L (2015) Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc Natl Acad Sci USA 112:12181–12186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takano E, White J, Thompson CJ, Bibb MJ (1995) Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166:133–137

    Article  CAS  PubMed  Google Scholar 

  9. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci USA 101:14031–14035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okano A, Isley NA, Boger DL (2017) Total syntheses of vancomycin-related glycopeptide antibiotics and key analogues. Chem Rev 117:11952–11993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozcengiz G, Okay S, Unsaldi E, Taskin B, Liras P, Piret J (2010) Homologous expression of aspartokinase (ask) gene in Streptomyces clavuligerus and its hom-deleted mutant: effects on cephamycin C production. Bioeng Bugs 1:191–197

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yin S et al (2015) Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Fact 14:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Du YL, Chen SF, Cheng LY, Shen XL, Tian Y, Li YQ (2009) Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator scnRII. J Microbiol 47:506–513

    Article  CAS  PubMed  Google Scholar 

  14. Liu SP et al (2015) Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Microbiol Res 173:25–33

    Article  CAS  PubMed  Google Scholar 

  15. Liu SP, Yu P, Yuan PH, Zhou ZX, Bu QT, Mao XM, Li YQ (2015) Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Appl Microbiol Biotechnol 99:2715–2726

    Article  CAS  PubMed  Google Scholar 

  16. Kieser T, Bibb MJ, Butter MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. Norwich, The John Innes Foundation

    Google Scholar 

  17. Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH (2005) A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57:1252–1264

    Article  CAS  PubMed  Google Scholar 

  18. Wang TJ et al (2017) Multiple transporters are involved in natamycin efflux in Streptomyces chattanoogensis L10. Mol Microbiol 103:713–728

    Article  CAS  PubMed  Google Scholar 

  19. Zhou ZX, Xu QQ, Bu QT, Liu SP, Yu P, Li YQ (2015) Transcriptome-guided identification of SprA as a pleiotropic regulator in Streptomyces chattanoogensis. Appl Microbiol Biotechnol 99:1287–1298

    Article  CAS  PubMed  Google Scholar 

  20. Du YL, Shen XL, Yu P, Bai LQ, Li YQ (2011) Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol 77:8415–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Ning X, Zhao Q, Kang Q, Bai L (2017) Improved PKS gene expression with strong endogenous promoter resulted in geldanamycin yield increase. Biotechnol J 12(11):1700321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program (2016YFD0400805), Natural Science Foundation of China (31571284, 31470212, 31520103901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Quan Li or Xu-Ming Mao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1027 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, XF., Bu, QT. et al. Transcriptome-Based Identification of a Strong Promoter for Hyper-production of Natamycin in Streptomyces. Curr Microbiol 76, 95–99 (2019). https://doi.org/10.1007/s00284-018-1589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1589-7

Navigation