Skip to main content
Log in

Complete Genome Sequence of Bacillus cereus CC-1, A Novel Marine Selenate/Selenite Reducing Bacterium Producing Metallic Selenides Nanomaterials

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Metallic selenides nanomaterials are widely used in many fields, especially for photothermal therapy and thermoelectric devices. However, the traditional chemogenic methods are energy-intensive and environmentally unfriendly. In this study, the first complete genome data of a metallic selenides producing bacterium Bacillus cereus CC-1 was reported. This strain can not only reduce selenite and selenate into elemental selenium nanoparticles (SeNPs), but also synthesize several metallic selenides nanoparticles when adding metal ions (Pb2+, Ag+ and Bi3+) and selenite simultaneously. The size of the genome is 5,308,319 bp with 36.07% G+C content. Several putative genes responsible for heavy metal resistance, salt resistance, and selenate reduction were found. This genome data provide fundamental information, which support the use of this strain for the production of biocompatible photothermal and thermoelectric nanomaterials under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14:1263–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tan Y, Yao R, Wang R, Wang D, Wang G, Zheng S (2016) Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Micro Cell Fact 15:157

    Article  CAS  Google Scholar 

  3. Nancharaiah YV, Lens PNL (2015) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eswayah AS, Smith TJ, Gardiner PHE (2016) Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microb 82:4848–4859

    Article  CAS  Google Scholar 

  5. Yu B, Zhang Y, Zheng W, Fan C, Chen T (2012) Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg Chem 51:8956–8963

    Article  CAS  PubMed  Google Scholar 

  6. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  7. Jiang S, Ho CT, Lee J, Duong HV, Han S, Hur H (2012) Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 87:621–624

    Article  CAS  PubMed  Google Scholar 

  8. Tugarova AV, Kamnev AA (2017) Proteins in microbial synthesis of selenium nanoparticles. Talanta 174:539–547

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Che L, Guo X, Wang X, Zhan J, Wu M, Hu Y, Yi X, Zhang X, Liu L (2017) Interface modulation of bacteriogenic Ag/AgCl nanoparticles by boosting the catalytic activity for reduction reactions using Co2+ ions. Chem Commun 53:4946–4949

    Article  CAS  Google Scholar 

  10. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232

    Article  CAS  PubMed  Google Scholar 

  13. Ge R, Mai G, Wang P, Zhou M, Luo Y, Cai Y, Zhou F (2016) CRISPRdigger: detecting CRISPRs with better direct repeat annotations. Sci Rep 6:32942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  PubMed  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269

    Article  CAS  PubMed  Google Scholar 

  17. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic acids res 33:D325–D328

    Article  CAS  PubMed  Google Scholar 

  19. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:6

    Article  Google Scholar 

  21. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Pontén TS, Ussery DW, Aarestrup FM, Lund O (2012) Multilocus sequence typing of total genome sequenced bacteria. J Clin Microbiol 50:1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Priest FG, Barker M, Baillie LW, Holmes EC, Maiden MC (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou H, Che L, Guo Z, Wu M, Li W, Xu W, Liu L (2018) Bacteria-mediated ultrathin Bi2Se3 nanosheets fabrication and their application in photothermal cancer therapy. ACS Sustain Chem Eng 6:4863–4870

    Article  CAS  Google Scholar 

  24. Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29

    Article  CAS  Google Scholar 

  25. Han L, Balazs DM, Shulga AG, Abdu-Aguye M, Ma W, Loi MA (2018) PbSe nanorod field-effect transistors: room-and low-temperature performance. Adv Electron Mater 4:1700580

    Article  CAS  Google Scholar 

  26. Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc 126:11752–11753

    Article  CAS  PubMed  Google Scholar 

  27. Ramisse V, Patra G, Garrigue H, Guesdon JL, Mock M (1996) Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol Lett 145:9–16

    Article  CAS  PubMed  Google Scholar 

  28. Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, Koehler TM, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson PJ (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181:6509–6515

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M, Sun Y, Wang L, Shao Z (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:14082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sabaty M, Avazeri C, Pignol D, Vermeglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microb 67:5122–5126

    Article  CAS  Google Scholar 

  31. Wasmund K, Mußmann M, Loy A (2017) The life sulphuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep 9:323–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan Y, Wang Y, Wang Y, Xu D, Huang Y, Wang D, Wang G, Rensing C, Zheng S (2018) Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. J Hazard Mater 359:129–138

    Article  CAS  PubMed  Google Scholar 

  33. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microb Biotechnol 100:2555–2566

    Article  CAS  Google Scholar 

  34. Sarret G, Avoscan L, Carriere M, Collins R, Geoffroy N, Carrot F, Coves J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microb 71:2331–2337

    Article  CAS  Google Scholar 

  35. Yun JH, Bae JW (2018) Complete genome sequence of the halophile bacterium Kushneria marisflavi KCCM 80003T, isolated from seawater in Korea. Mar Genomics 37:35–38

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 31500080) and “the Fundamental Research Funds for the Central Universities” (DUT17JC46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 398 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, L., Xu, W., Zhan, J. et al. Complete Genome Sequence of Bacillus cereus CC-1, A Novel Marine Selenate/Selenite Reducing Bacterium Producing Metallic Selenides Nanomaterials. Curr Microbiol 76, 78–85 (2019). https://doi.org/10.1007/s00284-018-1587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1587-9

Navigation