Skip to main content
Log in

Microbial Communities of the Gut and Nest of the Humus- and Litter-Feeding Termite Procornitermes araujoi (Syntermitinae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The evolution of the symbiotic association with microbes allowed termites to decompose ingested lignocellulose from plant-derived substrates, including herbivore dung and soil humus. Representatives of the Syntermitinae (Termitidae) range in their feeding habits from wood and litter-feeding to humus-feeding species. However, only limited information is available about their feeding ecology and associated microbial communities. Here we conducted a study of the microbial communities associated to the termite Procornitermes araujoi using Illumina sequencing of the 16S and ITS rRNA genes. This species has been previously included in different feeding guilds. However, most aspects of its feeding ecology are unknown, especially those associated to its symbiotic microbiota. Our results showed that the microbial communities of termite guts and nest substrates of P. araujoi differed significantly for bacteria and fungi. Firmicutes dominated the bacterial gut community of both workers and soldiers, whereas Actinobacteria was found in higher prevalence in the nest walls. Sordariomycetes was the most abundant fungal class in both gut and nest samples and distinguish P. araujoi from the grass/litter feeding Cornitermes cumulans. Our results also showed that diversity of gut bacteria were higher in P. araujoi and Silvestritermes euamignathus than in the grass/litter feeders (C. cumulans and Syntermes dirus), that could indicate an adaptation of the microbial community of polyphagous termites to the higher complexity of their diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aanen DK, Eggleton P, Rouland-Lefevre C et al (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci 99:14887–14892. https://doi.org/10.1073/pnas.222313099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  3. Barbosa-Silva AM, Farias MAA, de Mello AP et al (2016) Lignocellulosic fungi in nests and food content of Constrictotermes cyphergaster and Inquilinitermes fur (Isoptera, Termitidae) from the semiarid region of Brazil. Fungal Ecol 20:75–78. https://doi.org/10.1016/j.funeco.2015.11.002

    Article  Google Scholar 

  4. Bengtsson-Palme J, Ryberg M, Hartmann M et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. https://doi.org/10.1111/2041-210X.12073

    Article  Google Scholar 

  5. Bignell D, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academy, Dordrecht, pp 363–387

    Chapter  Google Scholar 

  6. Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur J Soil Biol 36:117–125. https://doi.org/10.1016/S1164-5563(00)01058-X

    Article  Google Scholar 

  7. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. https://doi.org/10.1038/nrmicro3182

    Article  CAS  PubMed  Google Scholar 

  8. Cancello EM (1986) Revisão de Procornitermes Emerson (Isoptera, Termitidae, Nasutitermitinae). Papéis Avulsos Zool (São Paulo) 36:189–236

    Google Scholar 

  9. Coles De Negret HR, Redford KH (1982) The biology of nine termite species (Isoptera: Termitidae) from the Cerrado of Central Brazil. Psyche (Stuttg) 89:81–106

    Article  Google Scholar 

  10. Constantino R (1995) Revision of the neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). Univ Kansas Sci Bull 55:455–518

    Google Scholar 

  11. Constantino R, Dianese EC (2001) The urban termite fauna of Brasilia, Brazil (Isoptera). Sociobiology 38:323–326

    Google Scholar 

  12. Constantino R (2015) Cupins do Cerrado. Technical Books Editora, Rio de Janeiro

    Google Scholar 

  13. Costa PS, Oliveira PL, Chartone-Souza E, Nascimento AMA (2013) Phylogenetic diversity of prokaryotes associated with the mandibulate nasute termite Cornitermes cumulans and its mound. Biol Fertil Soils 49:567–574. https://doi.org/10.1007/s00374-012-0742-x

    Article  CAS  Google Scholar 

  14. Costa-Leonardo AM, Santo KD (2004) Occurrence of polygyny in Procornitermes araujoi (Termitidae, Nasutitermitinae). Sociobiology 44:607–613

    Google Scholar 

  15. Deshpande V, Wang Q, Greenfield P et al (2016) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5. https://doi.org/10.3852/14-293

    Article  PubMed  Google Scholar 

  16. Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269. https://doi.org/10.1128/AEM.04206-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diouf M, Hervé V, Mora P et al (2017) Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae). Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-017-0978-4

    Article  PubMed  Google Scholar 

  18. Diouf M, Roy V, Mora P et al (2015) Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermes arborum (Termitidae, Nasutitermitinae) using 16S rRNA gene pyrosequencing. PLoS ONE 10:e0140014. https://doi.org/10.1371/journal.pone.0140014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366. https://doi.org/10.1046/j.1365-2311.2001.00342.x

    Article  Google Scholar 

  20. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  21. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eggleton P, Tayasu I (2001) Feeding groups, lifetypes and the global ecology of termites. Ecol Res 16:941–960. https://doi.org/10.1046/j.1440-1703.2001.00444.x

    Article  Google Scholar 

  23. Emerson AE (1952) The neotropical genera Procornitermes and Cornitermes (Isoptera, Termitidae). Bull Am Museum Nat Hist 99:479–539

    Google Scholar 

  24. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27. https://doi.org/10.1206/651.1

    Article  Google Scholar 

  25. Franzini PZN, Ramond J-B, Scholtz CH et al (2016) The gut microbiomes of two Pachysoma MacLeay desert dung beetle species (Coleoptera: Scarabaeidae: Scarabaeinae) feeding on different diets. PLoS ONE 11:e0161118. https://doi.org/10.1371/journal.pone.0161118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gontijo TA, Junqueira D, Domingos D (1991) Guild distribution of some termites from Cerrado vegetation in South-east Brazil. J Trop Ecol 7:523–529. https://doi.org/10.1017/S0266467400005897

    Article  Google Scholar 

  27. He S, Ivanova N, Kirton E et al (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE. https://doi.org/10.1371/journal.pone.0061126

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74:1145–1151. https://doi.org/10.1271/bbb.100094

    Article  CAS  PubMed  Google Scholar 

  29. Huang X-F, Bakker MG, Judd TM et al (2013) Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb Ecol. https://doi.org/10.1007/s00248-013-0219-y

    Article  PubMed  Google Scholar 

  30. Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967. https://doi.org/10.1016/j.ympev.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  31. Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701. https://doi.org/10.1128/AEM.00683-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leonhardt S, Büttner E, Gebauer AM et al (2018) Draft genome sequence of the Sordariomycete Lecythophora (Coniochaeta) hoffmannii CBS 245.38. Genome Announc 6:e01510–e01517. https://doi.org/10.1128/genomeA.01510-17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manjula A, Pushpanathan M, Sathyavathi S et al (2015) Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol 72:267–275. https://doi.org/10.1007/s00284-015-0947-y

    Article  CAS  PubMed  Google Scholar 

  34. Mathews AGA (1977) Studies on termites from the Mato Grosso State. Academia Brasileira de Ciências, Rio de Janeiro, p 267

    Google Scholar 

  35. Menezes L, Alvarez TM, Persinoti GF et al (2017) Food storage by the savanna termite Cornitermes cumulans (Syntermitinae): a strategy to improve hemicellulose digestibility? Microb Ecol 76:492–505. https://doi.org/10.1007/s00248-017-1128-2

    Article  PubMed  Google Scholar 

  36. Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw210

    Article  PubMed  Google Scholar 

  37. Mikaelyan A, Dietrich C, Köhler T et al (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295. https://doi.org/10.1111/mec.13376

    Article  CAS  PubMed  Google Scholar 

  38. Mikaelyan A, Köhler T, Lampert N et al (2015) Classifying the bacterial gut microbiota of termites and cockroaches: a curated phylogenetic reference database (DictDb). Syst Appl Microbiol 38:472–482. https://doi.org/10.1016/j.syapm.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  39. Mikaelyan A, Strassert JFH, Tokuda G et al (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environ Microbiol 16:2711–2722. https://doi.org/10.1111/1462-2920.12425

    Article  CAS  Google Scholar 

  40. Miyata R, Noda N, Tamaki H et al (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251. https://doi.org/10.1271/bbb.60672

    Article  CAS  PubMed  Google Scholar 

  41. Nalepa CA (2016) ‘Cost’ of proctodeal trophallaxis in extant termite individuals has no relevance in analysing the origins of eusociality. Ecol Entomol 41:27–30. https://doi.org/10.1111/een.12276

    Article  Google Scholar 

  42. Neupane A, Maynard DS, Bradford MA (2015) Consistent effects of eastern subterranean termites (Reticulitermes flavipes) on properties of a temperate forest soil. Soil Biol Biochem 91:84–91. https://doi.org/10.1016/j.soilbio.2015.08.025

    Article  CAS  Google Scholar 

  43. Neuwirth E (2014) RColorBrewer: ColorBrewer palettes. R Package version 11-2. https://cran.R-project.org/package=RColorBrewer

  44. Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850. https://doi.org/10.1016/j.biotechadv.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  45. Ohkuma M, Noda S, Hongoh Y et al (2009) Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc R Soc London B Biol Sci 276:239–245. https://doi.org/10.1098/rspb.2008.1094

    Article  CAS  Google Scholar 

  46. Oksanen J, Blanchet FG, Kindt R et al (2013) Package ‘vegan.’ R Package ver 20-8. https://doi.org/10.4135/9781412971874.n145

  47. Oliveros JC (2016) Venny. An interactive tool for comparing lists with Venn’s diagrams. http://bioinfogp.cnnb.csic.es/tools/venny/index.html

  48. Poulsen M, Hu H, Li C et al (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci USA 111:14500–14505. https://doi.org/10.1073/pnas.1319718111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quirino BF, Pappas GJ, Tagliaferro AC et al (2009) Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res 164:59–70. https://doi.org/10.1016/j.micres.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  50. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

  51. Rahman NA, Parks DH, Willner DL et al (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome. https://doi.org/10.1186/s40168-015-0067-8

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rocha MM, Morales-Corrêa e Castro AC, Cuezzo C et al (2017) Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data. PLoS ONE 12:e0174366. https://doi.org/10.1371/journal.pone.0174366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rocha MM, Constantini JP (2015) Internal ornamentation of the first proctodeal segment of the digestive tube of Syntermitinae (Isoptera, Termitidae). Deutsche Entomologische Zeitschrift 62:29–44. https://doi.org/10.3897/dez.62.8550

    Article  Google Scholar 

  54. Rossmassler K, Dietrich C, Thompson C et al (2015) Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome. https://doi.org/10.1186/s40168-015-0118-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Santana RH, Catão ECP, Lopes FAC et al (2015) The gut microbiota of workers of the litter-feeding termite Syntermes wheeleri (Termitidae: Syntermitinae): archaeal, bacterial, and fungal communities. Microbial Ecol 70:545–556. https://doi.org/10.1007/s00248-015-0581-z

    Article  Google Scholar 

  56. Scheffrahn RH (2013) Compositermes vindai (Isoptera: Termitidae: Apicotermitinae), a new genus and species of soldierless termite from the neotropics. Zootaxa 3652:381–391. https://doi.org/10.11646/zootaxa.3652.3.6

    Article  PubMed  Google Scholar 

  57. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scully ED, Geib SM, Hoover K et al (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS ONE 8:e73827. https://doi.org/10.1371/journal.pone.0073827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  60. Siebers N, Martius C, Eckhardt K-U et al (2015) Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests. PLoS ONE 10:e0123790. https://doi.org/10.1371/journal.pone.0123790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Su L, Yang L, Huang S et al (2017) Variation in the gut microbiota of termites (Tsaitermes ampliceps) against different diets. Appl Biochem Biotechnol 181:32–47. https://doi.org/10.1007/s12010-016-2197-2

    Article  CAS  PubMed  Google Scholar 

  62. Thompson CL, Vier R, Mikaelyan A et al (2012) “Candidatus Arthromitus” revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ Microbiol 14:1454–1465. https://doi.org/10.1111/j.1462-2920.2012.02731.x

    Article  CAS  PubMed  Google Scholar 

  63. Visser AA, Nobre T, Currie CR et al (2012) Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microb Ecol 63:975–985. https://doi.org/10.1007/s00248-011-9987-4

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Gong Y, Zhao S, Liu G (2018) A new regulator of cellulase and xylanase in the thermophilic fungus Myceliophthora thermophila strain ATCC 42464. 3 Biotech 8:160. https://doi.org/10.1007/s13205-017-1069-y

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Su L, Huang S et al (2016) Diversity and resilience of the wood-feeding higher termite Mironasutitermes shangchengensis gut microbiota in response to temporal and diet variations. Ecol Evol 6:8235–8242. https://doi.org/10.1002/ece3.2497

    Article  PubMed  PubMed Central  Google Scholar 

  66. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565. https://doi.org/10.1038/nature06269

    Article  CAS  PubMed  Google Scholar 

  67. Wickham H (2009) Ggplot2 elegant graphics for data analysis. Springer, New York. https://doi.org/10.1007/978-0-387-98141-3

    Book  Google Scholar 

  68. Yun JH, Jung MJ, Kim PS, Bae JW (2018) Social status shapes the bacterial and fungal gut communities of the honey bee. Sci Rep 8:2019. https://doi.org/10.1038/s41598-018-19860-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zakrzewski M, Proietti C, Ellis JJ et al (2017) Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 33:782–783. https://doi.org/10.1093/bioinformatics/btw725

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Johana Rincones, Mauricio Rocha and the reviewer for their comments on the manuscript. We thank the Brazilian Bioethanol Science and Technology Laboratory CTBE/CNPEM NGS Sequencing Facility for generating the sequencing data described here. This study was supported by funds from São Paulo Research Foundation (FAPESP), grant # 2015/21497-6, coordinated by Alberto Arab. L. M. was supported by a master degree grant of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Arab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2021 KB)

Supplementary material 2 (XLSX 774 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, E.A., Alvarez, T.M., Persinoti, G.F. et al. Microbial Communities of the Gut and Nest of the Humus- and Litter-Feeding Termite Procornitermes araujoi (Syntermitinae). Curr Microbiol 75, 1609–1618 (2018). https://doi.org/10.1007/s00284-018-1567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1567-0

Navigation