Skip to main content

Advertisement

Log in

Soluble Compounds of Filamentous Fungi Harm the Symbiotic Fungus of Leafcutter Ants

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Chemical compounds are key to understand symbiotic interactions. In the leafcutter ant-microbe symbiosis a plethora of filamentous fungi continuously gain access the ant colonies through plant substrate collected by workers. Many filamentous fungi are considered transient in attine ant colonies, however, their real ecological role in this environment still remains unclear. A possible role of these microorganisms is the antagonism towards Leucoagaricus gongylophorus, the mutualistic fungus that serve as food for several leafcutter ant species. Here, we showed the antagonism of filamentous fungi isolated from different sources, and the negative impacts of their metabolites on the growth of the ant-fungal cultivar. Our results demonstrate that the chemical compounds produced by filamentous fungi can harm the mutualistic fungus of leafcutter ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  2. Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, Rodrigues A, Hertweck C, Kaltenpoth M (2017) Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun 8:15172

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seipke RF, Barke J, Brearley C, Hill L, Douglas WY, Goss RJ, Hutchings MI (2011) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 6:e22028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russell JA, Sanders JG, Moreau CS (2017) Hotspots for symbiosis: function, evolution, and specificity of ant-microbe associations from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecol News 24:43–69

    Google Scholar 

  5. Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694

    Article  CAS  PubMed  Google Scholar 

  6. Mueller UG, Scott JJ, Ishak HD, Cooper M, Rodrigues A (2010) Monoculture of leafcutter ant gardens. PLoS ONE 5:e12668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440

    Article  CAS  PubMed  Google Scholar 

  8. Cherrett JM, Peregrine DJ (1976) A review of the status of leaf-cutting ants and their control. Ann Appl Biol 84:124–128

    Article  Google Scholar 

  9. Mueller UG, Kardish MR, Ishak HD, Wright AM, Solomon SE, Bruschi SM, Carlson AL, Bacci M Jr (2018) Phylogenetic patterns of ant–fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Mol Ecol 27:2414–2434

    Article  PubMed  Google Scholar 

  10. Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002

    Article  CAS  PubMed  Google Scholar 

  11. Muchovej JJ, Della Lucia TM (1990) Escovopsis, a new genus from leaf cutting ant nests to replace Phialocladus nomem invalidum. Mycotaxon 37:191–195

    Google Scholar 

  12. Dhodary B, Schilg M, Wirth R, Spiteller D (2018) Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chem Eur J 24:4445–4452

    Article  CAS  PubMed  Google Scholar 

  13. Gerardo NM, Jacobs SR, Currie CR, Mueller UG (2006) Ancient host–pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol 4:1358–1363

    Article  CAS  Google Scholar 

  14. Marfetán JA, Romero AI, Folgarait PJ (2015) Pathogenic interaction between Escovopsis weberi and Leucoagaricus sp.: mechanisms involved and virulence levels. Fungal Ecol 17:52–61

    Article  Google Scholar 

  15. Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959

    Article  PubMed  Google Scholar 

  16. Kost C, Lakatos T, Böttcher I, Arendholz WR, Redenbach M, Wirth R (2007) Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften 94:821–828

    Article  CAS  PubMed  Google Scholar 

  17. Mueller UG, Dash D, Rabeling C, Rodrigues A (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912

    Article  CAS  PubMed  Google Scholar 

  18. Little AEF, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant–microbe symbiosis. Biol Lett 3:501–504

    Article  PubMed  PubMed Central  Google Scholar 

  19. Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222

    Article  PubMed  Google Scholar 

  20. Rodrigues A, Mueller UG, Ishak HD, Bacci M Jr, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues A, Pagnocca FC, Bacci M Jr, Hebling MJA, Bueno OC, Pfenning LH (2005) Variability of non-mutualistic filamentous fungi associated with Atta sexdens rubropilosa nests. Folia Microbiol 50:421–425

    Article  CAS  Google Scholar 

  22. Barcoto MO, Pedrosa F, Bueno OC, Rodrigues A (2017) Pathogenic nature of Syncephalastrum in Atta sexdens rubropilosa fungus gardens. Pest Manag Sci 73:999–1009

    Article  CAS  PubMed  Google Scholar 

  23. Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268:1033–1039

    Article  CAS  Google Scholar 

  24. Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc Lond B 273:1689–1695

    Article  Google Scholar 

  25. Rodrigues A, Carletti CD, Bueno OC, Pagnocca FC (2008) Leaf-cutting ant faecal fluid and mandibular gland secretion: effects on microfungi spore germination. Braz J Microbiol 39:64–67

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fisher PJ, Stradling DJ, Sutton BC, Petrini LE (1996) Microfungi in the fungus gardens of the leaf-cutting ant Atta cephalotes: a preliminary study. Mycol Res 100:541–546

    Article  Google Scholar 

  27. Rodrigues A, Passarini MRZ, Ferro M, Nagamoto NS (2014) Fungal communities in the garden chamber soils of leaf-cutting ants. J Basic Microbiol 54:1186–1196

    Article  CAS  PubMed  Google Scholar 

  28. Castrillo ML, Bich GA, Zapata PD, Villalba LL (2016) Biocontrol of Leucoagaricus gongylophorus of leaf-cutting ants with the mycoparasitic agent Trichoderma koningiopsis. Mycosphere 7:810–819

    Article  Google Scholar 

  29. Folgarait P, Gorosito N, Poulsen M, Currie CR (2011) Preliminary in vitro insights into the use of natural fungal pathogens of leaf-cutting ants as biocontrol agents. Curr Microbiol 63:250

    Article  CAS  PubMed  Google Scholar 

  30. Nascimento MO, Almeida Sarmento R, Santos GR, Oliveira CA, Souza DJ (2017) Antagonism of Trichoderma isolates against Leucoagaricus gongylophorus (Singer) Möller. J Basic Microbiol 57:699–704

    Article  CAS  PubMed  Google Scholar 

  31. Silva A, Rodrigues A, Bacci M Jr, Pagnocca FC, Bueno ODC (2006) Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia 162:115–119

    Article  CAS  PubMed  Google Scholar 

  32. Varanda-Haifig SS, Albarici TR, Nunes PH, Haifig I, Vieira PC, Rodrigues A (2017) Nature of the interactions between hypocrealean fungi and the mutualistic fungus of leaf-cutter ants. Antonie Van Leeuwenhoek 110:593–605

    Article  PubMed  Google Scholar 

  33. Wicklow DT (1992) Interference competition. In: Carrol GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem, 2nd edn. Marcel Dekker, New York, pp 265–274

    Google Scholar 

  34. Rodrigues A, Bacci M Jr, Muller UG, Ortiz A, Pagnocca FC (2008) Microfungal “weeds” in the leafcutter ant symbiosis. Microb Ecol 56:604–614

    Article  CAS  PubMed  Google Scholar 

  35. Rodrigues A, Pagnocca FC, Bueno OC, Pfenning LH, Bacci M Jr (2005) Assessment of microfungi in fungus gardens free of the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae). Sociobiology 46:329–334

    Google Scholar 

  36. Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324

    Article  CAS  PubMed  Google Scholar 

  37. Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: Its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38

    Article  CAS  PubMed  Google Scholar 

  38. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  CAS  PubMed  Google Scholar 

  39. Karlsson M, Durling MB, Choi J, Kosawang C, Lackner G, Tzelepis GD, Nygren K, Dubey MK, Kamou N, Levasseur A, Zapparata A (2015) Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biol Evol 7:465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maciá-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–228

    Article  PubMed  Google Scholar 

  41. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  42. Kubicek CP et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pagnocca FC, da Silva OA, Hebling-Beraldo MJ, Bueno OC, Fernandes JB, Vieira PC (1990) Toxicity of sesame extracts to the symbiotic fungus of leaf-cutting ants. Bull Entomol Res 80:349–352

    Article  Google Scholar 

  44. Jelihovschi EG, Faria JC, Allaman IB (2014) ScottKnott: a package for performing the Scott-Knott clustering algorithm in R. Trend Mat Apl Comput 15:3–17

    Article  Google Scholar 

  45. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  46. Borba RD, Loeck AE, Bandeira JD, Moraes CL, Centenaro ED (2006) Growth of symbiont fungi of cutter ants of the genus Acromyrmex in means of culture with different extracts. Cienc Rural 36:725–730

    Article  Google Scholar 

  47. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701

    Article  CAS  Google Scholar 

  48. Nygaard S, Hu H, Li C, Schiott M, Chen Z, Yang Z, Xie Q, Ma C, Deng Y, Dikow RB, Rabeling C (2016) Reciprocal genomic evolution in the ant-fungus agricultural symbiosis. Nat Commun 7:12233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong SB, Seo H, Bae DW, Bae I, Kim JJ (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138

    Article  CAS  Google Scholar 

  50. de Lima FB, Félix C, Osório N, Alves A, Vitorino R, Domingues P, da Silva Ribeiro RT, Esteves AC (2017) Trichoderma harzianum T1A constitutively secretes proteins involved in the biological control of Guignardia citricarpa. Biol Control 106:99–109

    Article  CAS  Google Scholar 

  51. Van Bael SA, Seid MA, Wcislo WT (2012) Endophytic fungi increase the processing rate of leaves by leaf-cutting ants (Atta). Ecol Entomol 37:318–321

    Article  Google Scholar 

  52. Rocha SL, Evans HC, Jorge VL, Cardoso LAO, Pereira FS, Rocha FB, Barreto RW, Hart AG, Elliot SL (2017) Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy. R Soc Open Sci 4:160628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Bael SA, Fernández-Marín H, Valencia MC, Rojas EI, Wcislo WT, Herre EA (2009) Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens. Proc R Soc London B 276:2419–2426

    Article  Google Scholar 

  54. Rocha SL, Jorge VL, Della Lucia TMC, Barreto RW, Evans HC, Elliot SL (2014) Quality control by leaf-cutting ants: evidence from communities of endophytic fungi in foraged and rejected vegetation. Arthropod Plant Interact 8:485–493

    Article  Google Scholar 

  55. Silva A, Bacci JRM, de Siqueira CG, Bueno OC, Pagnocca FC, Hebling MJ (2003) Survival of Atta sexdens workers on different food sources. J Insect Physiol 49:307–313

    Article  CAS  PubMed  Google Scholar 

  56. Heine D, Holmes NA, Worsley SF, Santos AC, Innocent TM, Scherlach K, Patrick EH, Douglas WY, Murrell JC, Vieria PC, Boomsma JJ (2018) Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat Commun 9:2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors would like to thank “Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)” and “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” for financial support: Grant # 2011/16765-0 and 478559/2011-9, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizarria, R., Moia, I.C., Montoya, Q.V. et al. Soluble Compounds of Filamentous Fungi Harm the Symbiotic Fungus of Leafcutter Ants. Curr Microbiol 75, 1602–1608 (2018). https://doi.org/10.1007/s00284-018-1566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1566-1

Navigation