Skip to main content
Log in

A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The unicellular freshwater cyanobacterium Synechocystis sp. PCC 6803 is capable of using dihydroxamate xenosiderophores, either ferric schizokinen (FeSK) or a siderophore of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 (SAV), as the sole source of iron in the TonB-dependent manner. The fecCDEB1-schT gene cluster encoding a siderophore transport system that is involved in the utilization of FeSK and SAV in Synechocystis sp. PCC 6803 was identified. The gene schT encodes TonB-dependent outer membrane transporter, whereas the remaining four genes encode the ABC-type transporter FecB1CDE formed by the periplasmic binding protein FecB1, the transmembrane permease proteins FecC and FecD, and the ATPase FecE. Inactivation of any of these genes resulted in the inability of cells to utilize FeSK and SAV. Our data strongly suggest that Synechocystis sp. PCC 6803 can readily internalize Fe-siderophores via the classic TonB-dependent transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akers HA (1983) Isolation of the siderophore schizokinen from soil of rice fields. Appl Environ Microbiol 45:1704–1706

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. https://doi.org/10.1016/s0168-6445(03)00055-x

    Article  PubMed  CAS  Google Scholar 

  3. Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19:29–32. https://doi.org/10.1111/j.1574-6968.1983.tb00504.x

    Article  CAS  Google Scholar 

  4. Babykin MM, Obando STA, Zinchenko VV (2018) TonB-dependent utilization of dihydroxamate xenosiderophores in Synechocystis sp. PCC 6803. Curr Microbiol 75:117–123. https://doi.org/10.1007/s00284-017-1355-2

    Article  PubMed  CAS  Google Scholar 

  5. Beiderbeck H, Taraz K, Budzikiewicz H, Walsby AE (2000) Anachelin, the siderophore of the cyanobacterium Anabaena cylindrica CCAP 1403/2A. Z Naturforsch 55:681–687. https://doi.org/10.1515/znc-2000-9-1002

    Article  CAS  Google Scholar 

  6. Beis K (2015) Structural basis for the mechanism of ABC transporters. Biochem Soc Trans 43:889–893. https://doi.org/10.1042/bst20150047

    Article  PubMed  CAS  Google Scholar 

  7. Boiteau RM, Repeta DJ (2015) An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics 7:877–884. https://doi.org/10.1039/c5mt00005j

    Article  PubMed  CAS  Google Scholar 

  8. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617. https://doi.org/10.1126/science.1131669

    Article  PubMed  CAS  Google Scholar 

  9. Boyer GL, Gillam AH, Trick C (1987) Iron chelation and uptake. In: Fay P, van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 415–436

    Google Scholar 

  10. Braun V (1997) Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch Microbiol 167:325–331. https://doi.org/10.1007/s002030050451

    Article  PubMed  CAS  Google Scholar 

  11. Braun V, Hantke K, Köster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145

    PubMed  CAS  Google Scholar 

  12. Budzikiewicz H, Munzinger M, Taraz K, Meyer JM (1997) Schizokinen, the siderophore of the plant deleterious bacterium Ralstonia (Pseudomonas) solanacearum ATCC 11696. Z Naturforsch 52c:496–503

    Article  Google Scholar 

  13. Byers BR, Powell MV, Lankford CE (1967) Iron chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol 93:286–294

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Byrne RH, Kester DR (1976) Solubility of hydrous ferric oxide and iron speciation in seawater. Mar Chem 4:255–274. https://doi.org/10.1016/0304-4203(76)90012-8

    Article  CAS  Google Scholar 

  15. Carbonetti NH, Williams PH (1984) A cluster of five genes specifying the aerobactin iron uptake system of plasmid ColV-K30. Infect Immun 46:7–12

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen M, Wang W (2008) Accelerated uptake by phytoplankton of iron bound to humic acids. Aquat Biol 3:155–166. https://doi.org/10.3354/ab00064

    Article  Google Scholar 

  17. Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611. https://doi.org/10.1007/s10534-010-9361-x

    Article  PubMed  CAS  Google Scholar 

  18. Cuív PO, Clarke P, Lynch D, O’Connell M (2004) Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol 186:2996–3005. https://doi.org/10.1128/JB.186.10.2996-3005.2004

    Article  PubMed  CAS  Google Scholar 

  19. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. https://doi.org/10.1128/mmbr.00031-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ehrenreich IM, Waterbury JB, Webb EA (2005) Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 71:7401–7413. https://doi.org/10.1128/AEM.71.11.7401-7413.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fischer E, Günter K, Braun V (1989) Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of Exb mutants by overexpressed TonB and physical stabilization of TonB by ExbB. J Bacteriol 171:5127–5134. https://doi.org/10.1128/jb.171.9.5127-5134.1989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Goldman SJ, Lammers PJ, Berman MS, Sanders-Loehr J (1983) Siderophore-mediated uptake in different strains of Anabaena sp. J Bacteriol 156:1144–1150

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Gough J, Murray N (1983) Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol 166:1–19. https://doi.org/10.1016/S0022-2836(83)80047-3

    Article  PubMed  CAS  Google Scholar 

  24. Hernández-Prieto MA, Schön V, Georg J, Barreira L, Varela J, Hess WR, Futschik ME (2012) Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3 Genes Genomes Genet 2:1475–1495. https://doi.org/10.1534/g3.112.003863

    Article  CAS  Google Scholar 

  25. Hopkinson BM, Morel FMM (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22:659–669. https://doi.org/10.1007/s10534-009-9235-2

    Article  PubMed  CAS  Google Scholar 

  26. Houot L, Floutier M, Marteyn B, Michaut M, Picciocchi A, Legrain P, Aude JC, Cassier-Chauvat C, Chauvat F (2007) Cadmium triggers an integrated reprogramming of the metabolism of Synechocystis PCC6803, under the control of the Slr1738 regulator. BMC Genom 8:350. https://doi.org/10.1186/1471-2164-8-350

    Article  CAS  Google Scholar 

  27. Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923. https://doi.org/10.4319/lo.2005.50.6.1918

    Article  CAS  Google Scholar 

  28. Itou Y, Okada S, Murakami M (2001) Two structural isomeric siderophores from the freshwater cyanobacterium Anabaena cylindrica (NIES-19). Tetrahedron 57:9093–9099. https://doi.org/10.1016/s0040-4020(01)00934-6

    Article  CAS  Google Scholar 

  29. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136. https://doi.org/10.1093/dnares/3.3.109

    Article  PubMed  CAS  Google Scholar 

  30. Katoh H, Hagino N, Grossman AR, Ogawa T (2001) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:2779–2784. https://doi.org/10.1128/JB.183.9.2779-2784.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Katoh H, Hagino N, Ogawa T (2001) Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. Strain PCC 6803. Plant Cell Physiol 42:823–827. https://doi.org/10.1093/pcp/pce106

    Article  PubMed  CAS  Google Scholar 

  32. Keren N, Aurora R, Pakrasi HB (2004) Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol 135:1666–1673. https://doi.org/10.1104/pp.104.042770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kopf M, Klähn S, Scholz I, Matthiessen JKF, Hess WR, Voß B (2014) Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 21:527–539. https://doi.org/10.1093/dnares/dsu018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Köster W (1997) Transport of iron(III) hydroxamates across the cytoplasmic membrane of Escherichia col. In: Trautwein AX (ed) Bioinorganic chemistry, transition metals in biology and their coordination chemistry. Wiley-VCH, Weinheim, pp 56–68

    Google Scholar 

  35. Köster W (2001) ABC transporter mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301. https://doi.org/10.1016/S0923-2508(01)01200-1

    Article  PubMed  Google Scholar 

  36. Kranzler C, Lis H, Finkel OM, Schmetterer G, Shaked Y, Keren N (2014) Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. ISME J 8:409–417. https://doi.org/10.1038/ismej.2013.161

    Article  PubMed  CAS  Google Scholar 

  37. Kranzler C, Lis H, Shaked Y, Keren N (2011) The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ Microbiol 13:2990–2999. https://doi.org/10.1111/j.1462-2920.2011.02572.x

    Article  PubMed  CAS  Google Scholar 

  38. Kranzler C, Rudolf M, Keren N, Schleiff E (2013) Iron in cyanobacteria. In: Chauvat F, Cassier-Chauvat C (eds) Advance in botanical research 65: genomics of cyanobacteria. Elsevier Ltd, Netherlands, pp 57–105. https://doi.org/10.1016/b978-0-12-394313-2.00003-2

    Chapter  Google Scholar 

  39. Krone WJA, Luirink J, Koningstein G, Oudega B, de Graaf FK (1983) Subcloning of the cloacin DF13/aerobactin receptor protein and identification of a pColV-K30-determined polypeptide involved in ferric-aerobactin uptake. J Bacteriol 156:945–948

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Lis H, Kranzler C, Keren N, Shaked Y (2015) A comparative study of iron uptake rates and mechanisms amongst marine and fresh water cyanobacteria: prevalence of reductive iron uptake. Life 5:841–860. https://doi.org/10.3390/life5010841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lis H, Shaked Y (2009) Probing the bioavailability of organically bound iron: a case study in the Synechococcus-rich waters of the Gulf of Aqaba. Aquat Microb Ecol 56:241–253. https://doi.org/10.3354/ame01347

    Article  Google Scholar 

  42. Lis H, Shaked Y, Kranzler C, Keren N, Morel FMM (2015) Iron bioavailability to phytoplankton: an empirical approach. ISME J 9:1003–1013. https://doi.org/10.1038/ismej.2014.199

    Article  PubMed  CAS  Google Scholar 

  43. Luck SN, Turner SA, Rajakumar K, Sakellaris H, Adler B (2001) Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect Immun 69:6012–6021. https://doi.org/10.1128/IAI.69.10.6012-6021.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mann EL, Chisholm SW (2000) Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol Oceanogr 45:1067–1076. https://doi.org/10.4319/lo.2000.45.5.1067

    Article  CAS  Google Scholar 

  45. McKay RML, Bullerjahn GS, Porta D, Brown ET, Sherrell RM, Smutka TM, Sterner RW, Twiss MR, Wilhelm SW (2004) Consideration of the bioavailability of iron in the North American Great Lakes: development of novel approaches toward understanding iron biogeochemistry. Aquat Ecosyst Health Manag 7:475–490. https://doi.org/10.1080/14634980490513364

    Article  CAS  Google Scholar 

  46. Mirus O, Strauss S, Nicolaisen K, Von Haeseler A, Schleiff E (2009) TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol 7:68. https://doi.org/10.1186/1741-7007-7-68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mullis KB, Pollack JR, Neilands JB (1971) Structure of schizokinen, an iron-transport compound from Bacillus megaterium. Biochemistry 10:4894–4898. https://doi.org/10.1021/bi00802a010

    Article  PubMed  CAS  Google Scholar 

  48. Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K, Maldener I, Muro-Pastor AM, Flores E, Schleiff E (2008) Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. J Bacteriol 190:7500–7507. https://doi.org/10.1128/JB.01062-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nikawa J, Kawabata M (1998) PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae. Nucleic Acids Res 26:860–861. https://doi.org/10.1093/nar/26.3.860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188:3664–3673. https://doi.org/10.1128/JB.188.10.3664-3673.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pi H, Helmann JD (2017) Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis. Proc Natl Acad Sci USA 114:12785–12790. https://doi.org/10.1073/pnas.1713008114

    Article  PubMed  CAS  Google Scholar 

  52. Postle K, Larsen RA (2007) TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20:453–465. https://doi.org/10.1007/s10534-006-9071-6

    Article  PubMed  CAS  Google Scholar 

  53. Raines DJ, Sanderson TJ, Wilde EJ, Duhme-Klair A-K (2015) Siderophores. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham, pp 1–32. https://doi.org/10.1016/B978-0-12-409547-2.11040-6

    Chapter  Google Scholar 

  54. Rose AL, Salmon TP, Lukondeh T, Neilan BA, Waite TD (2005) Use of superoxide as an electron shuttle for iron acquisition by the marine cyanobacterium Lyngbya majuscula. Environ Sci Technol 39:3708–3715. https://doi.org/10.1021/es048766c

    Article  PubMed  CAS  Google Scholar 

  55. Rudolf M, Kranzler C, Lis H, Margulis K, Stevanovic M, Keren N, Schleiff E (2015) Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol Microbiol 97:577–588. https://doi.org/10.1111/mmi.13049

    Article  PubMed  CAS  Google Scholar 

  56. Rudolf M, Stevanovic M, Kranzler C, Pernil R, Keren N, Schleiff E (2016) Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120. Plant Mol Biol 92:57–69. https://doi.org/10.1007/s11103-016-0495-2

    Article  PubMed  CAS  Google Scholar 

  57. Shaked Y, Lis H (2012) Disassembling iron availability to phytoplankton. Front Microbiol 3:1–26. https://doi.org/10.3389/fmicb.2012.00123

    Article  Google Scholar 

  58. Shcolnick S, Shaked Y, Keren N (2007) A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC6803. Biochim Biophys Acta 1767:814–819. https://doi.org/10.1016/j.bbabio.2006.11.015

    Article  PubMed  CAS  Google Scholar 

  59. Simpson FB, Neilands JB (1976) Siderochromes in Cyanophyceae: isolation and characterization of schizokinen from Anabaena sp. J Phycol 12:44–48. https://doi.org/10.1111/j.1529-8817.1976.tb02824.x

    Article  Google Scholar 

  60. Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839. https://doi.org/10.1104/pp.103.024018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E (2012) The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 14:1655–1670. https://doi.org/10.1111/j.1462-2920.2011.02619.x

    Article  PubMed  CAS  Google Scholar 

  62. Staudenmaier H, Vanhove B, Yaraghi Z, Braun V (1989) Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. J Bacteriol 171:2626–2633. https://doi.org/10.1128/jb.171.5.2626-2633.1989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Storey EP, Boghozian R, Little JL, Lowman DW, Chakraborty R (2006) Characterization of ‘schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals 19:637–649. https://doi.org/10.1007/s10534-006-9001-7

    Article  PubMed  CAS  Google Scholar 

  64. Thomas GH (2010) Homes for the orphans: utilization of multiple substrate-binding proteins by ABC transporters. Mol Microbiol 75:6–9. https://doi.org/10.1111/j.1365-2958.2009.06961.x

    Article  PubMed  CAS  Google Scholar 

  65. Trick CG, Kerry A (1992) Isolation and purification of siderophores produced by cyanobacteria, Synechococcus sp. PCC 7942 and Anabaena variabilis ATCC 29413. Curr Microbiol 24:241–245. https://doi.org/10.1007/BF01577326

    Article  CAS  Google Scholar 

  66. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647. https://doi.org/10.1146/annurev.micro.58.030603.123811

    Article  PubMed  CAS  Google Scholar 

  67. Zappa S, Bauer CE (2017) The maintenance of iron homeostasis among prokaryotic phototrophs. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes. Springer International Publishing AG, Cham, pp 123–161. https://doi.org/10.1007/978-3-319-51365-2_4

    Chapter  Google Scholar 

  68. Zinchenko VV, Babykin MM, Shestakov SV (1984) Mobilization of non-conjugative plasmids into Rhodopseudomonas sphaeroides. J Gen Microbiol 130:1587–1590. https://doi.org/10.1099/00221287-130-6-1587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Igor B. Kaplan for critically reading the manuscript. This work was supported by the Russian Foundation for Basic Research (Project 13-04-01767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Zinchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obando S., T.A., Babykin, M.M. & Zinchenko, V.V. A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803. Curr Microbiol 75, 1165–1173 (2018). https://doi.org/10.1007/s00284-018-1505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1505-1

Navigation