Current Microbiology

, Volume 75, Issue 8, pp 1046–1054 | Cite as

A New Approach of Rpf Addition to Explore Bacterial Consortium for Enhanced Phenol Degradation Under High Salinity Conditions

  • Ziqiao Li
  • Yunge Zhang
  • Yuyang Wang
  • Rongwu Mei
  • Yu Zhang
  • Muhammad Zaffar Hashmi
  • Hongjun Lin
  • Xiaomei Su


Only a small fraction of salt-tolerant phenol-degrading bacteria can be isolated by conventional plate separation methods, because most bacteria in nature are in a viable but non-culturable (VBNC) state. The aims of this study were to screen out more effective functional bacteria using resuscitation-promoting factor (Rpf), and to determine whether a mixed bacterial consortium possesses better phenol-degrading capabilities under high salinity conditions. The results indicated that three strains unique to treatment group with Rpf addition were obtained. A mixed bacterial consortium consisting of two high-efficient strains which belonged to genera Bacillus and Corynebacterium was capable of utilizing phenol as a sole source of carbon at high salinity. Complete degradation of 100 mg/L phenol at 2% NaCl concentration was achieved within 8 h. This study provides new insights into resuscitation of VBNC bacteria for enhanced treatment of phenol-laden saline wastewater.

Graphical Abstract



We gratefully acknowledge the financial supports provided by the Special Fund for the Zhejiang Research Academy of Environmental Science (Grant No. 2017F30030), the National Natural Science Foundation of China (Grant No. 41701354), the Natural Science Foundation of Zhejiang Province of China (Grant No. LQ17D010002), and the Research Fund for the Doctoral Research of Key University (Grant No. ZZ323205020516001108).

Compliance with Ethical Standards

Conflict and interest

The authors declare that they have no conflict of interest.


  1. 1.
    Acikgoz E, Ozcan B (2016) Phenol biodegradation by Halophilic archaea. Int Biodeterior Biodegrad 107:140–146CrossRefGoogle Scholar
  2. 2.
    Alva V, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis influence of pH and salinity. Environ Sci Technol 37:4397–4402CrossRefPubMedGoogle Scholar
  3. 3.
    Annadurai G, Ling LY, Lee JF (2008) Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J Hazard Mater 151(1):171–178CrossRefPubMedGoogle Scholar
  4. 4.
    Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2006) Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater 129(1–3):216–222CrossRefPubMedGoogle Scholar
  5. 5.
    Banerjee A, Ghoshal AK (2011) Phenol degradation performance by isolated Bacillus cereus immobilized in alginate. Int Biodeterior Biodegrad 65(7):1052–1060CrossRefGoogle Scholar
  6. 6.
    Barriosmartinez A, Barbot E, Marrot B, Moulin P, Roche N (2006) Degradation of synthetic phenol-containing wastewaters by MBR. J Membr Sci 281(1–2):288–296CrossRefGoogle Scholar
  7. 7.
    Bonfa MR, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24(5):699–709CrossRefPubMedGoogle Scholar
  8. 8.
    Castillo Carvajal LC, Sanz Martin JL, Barragan Huerta BE (2014) Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut Res Int 21(16):9578–9588CrossRefPubMedGoogle Scholar
  9. 9.
    Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Nat Biotechnol 3(9):817–820CrossRefGoogle Scholar
  10. 10.
    Dalvi S, Nicholson C, Najar F, Roe BA, Canaan P, Hartson SD, Fathepurea BZ (2014) Arhodomonas sp. strain seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl Environ Microbiol 80(21):6664–6667CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275CrossRefPubMedGoogle Scholar
  12. 12.
    Epstein SS (2013) The phenomenon of microbial uncultivability. Curr Opin Microbiol 16(5):636–642CrossRefPubMedGoogle Scholar
  13. 13.
    Fiamegos Y, Stalikas C, Pilidis G (2002) 4-Aminoantipyrine spectrophotometric method of phenol analysis: study of the reaction products via liquid chromatography with diode-array and mass spectrometric detection. Anal Chim Acta 467(1):105–114CrossRefGoogle Scholar
  14. 14.
    Fida TT, Moreno-Forero SK, Breugelmans P, Heipieper H, Röling WFM, Springael D (2017) Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil. Environ Sci Technol 51:1570–1579CrossRefPubMedGoogle Scholar
  15. 15.
    Hassan H, Jin B, Donner E, Vasileiadis S, Saint C, Dai S (2018) Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: microbial consortia could make differences. Chem Eng J 332:647–657CrossRefGoogle Scholar
  16. 16.
    Ho KL, Lin B, Chen YY, Lee DJ (2009) Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules. Bioresour Technol 100(21):5051–5055CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang Y, Wei L, Zhang H, Yang K, Wang H (2016) Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater. Bioresour Technol 218:146–152CrossRefPubMedGoogle Scholar
  18. 18.
    Jiang Y, Yang K, Wang H, Shang Y, Yang X (2015) Characteristics of phenol degradation in saline conditions of a halophilic strain JS3 isolated from industrial activated sludge. Mar Pollut Bull 99(1–2):230–234CrossRefPubMedGoogle Scholar
  19. 19.
    Jin Y, Gan G, Yu X, Wu D, Zhang L, Yang N, Hu J, Liu Z, Zhang L, Hong H, Yan X, Liang Y, Ding L, Pan Y (2017) Isolation of viable but non-culturable bacteria from printing and dyeing wastewater bioreactor based on resuscitation promoting factor. Curr Microbiol 74(7):787–797CrossRefPubMedGoogle Scholar
  20. 20.
    Ju F, Zhang T (2014) Novel microbial populations in ambient and mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing. Microb Ecol 68(2):235–246CrossRefPubMedGoogle Scholar
  21. 21.
    Kobayashi F, Maki T, Nakamura Y (2012) Biodegradation of phenol in seawater using bacteria isolated from the intestinal contents of marine creatures. Int Biodeterior Biodegrad 69:113–118CrossRefGoogle Scholar
  22. 22.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefPubMedGoogle Scholar
  23. 23.
    Lin Q, Donghui W, Jianlong W (2010) Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon. Bioresour Technol 101(14):5229–5234CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Su X, Lu L, Ding L, Shen C (2016) A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process. Environ Sci Pollut Res Int 23(5):4498–4508CrossRefPubMedGoogle Scholar
  25. 25.
    Mnif S, Sayadi S, Chamkha M (2014) Biodegradative potential and characterization of a novel aromatic-degrading bacterium isolated from a geothermal oil field under saline and thermophilic conditions. Int Biodeterior Biodegrad 86:258–264CrossRefGoogle Scholar
  26. 26.
    Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB (1998) A bacterial cytokine. Proc Natl Acad Sci USA 95(15):8916–8921CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59(1):84–98CrossRefPubMedGoogle Scholar
  28. 28.
    Papa R, Parrilli E, Sannia G (2009) Engineered marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125: a promising microorganism for the bioremediation of aromatic compounds. J Appl Microbiol 106(1):49–56CrossRefPubMedGoogle Scholar
  29. 29.
    Ren LF, Chen R, Zhang X, Shao J, He Y (2017) Phenol biodegradation and microbial community dynamics in extractive membrane bioreactor (EMBR) for phenol-laden saline wastewater. Bioresour Technol 244(1):1121–1128CrossRefPubMedGoogle Scholar
  30. 30.
    Santos VL, Linardi VR (2004) Biodegradation of phenol by a filamentous fungi isolated from industrial effluents-identification and degradation potential. Process Biochem 39(8):1001–1006CrossRefGoogle Scholar
  31. 31.
    Sivasubramanian S, Namasivayam SKR (2015) Phenol degradation studies using microbial consortium isolated from environmental sources. J Environ Chem Eng 3(1):243–252CrossRefGoogle Scholar
  32. 32.
    Su X, Shen H, Yao X, Ding L, Yu C, Shen C (2013) A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresour Technol 146:27–34CrossRefPubMedGoogle Scholar
  33. 33.
    Su X, Zhang Q, Hu J, Hashmi MZ, Ding L, Shen C (2015) Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Appl Microbiol Biotechnol 99(4):1989–2000CrossRefPubMedGoogle Scholar
  34. 34.
    Su XM, Chen X, Hu JX, Shen CF, Ding LX (2013) Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 29(12):2213–2218CrossRefPubMedGoogle Scholar
  35. 35.
    Su XM, Liu YD, Hashmi MZ, Ding LX, Shen CF (2015) Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microb Biotechnol 8(3):569–578CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Su XM, Sun FQ, Wang YL, Hashmi MZ, Guo L, Ding LX, Shen CF (2015) Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Sci Rep 5:18590CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang W, Wu B, Pan S, Yang K, Hu Z, Yuan S (2017) Performance robustness of the UASB reactors treating saline phenolic wastewater and analysis of microbial community structure. J Hazard Mater 331:21–27CrossRefPubMedGoogle Scholar
  38. 38.
    White J, Gilbert J, Hill G, Hill E, Huse SM, Weightman AJ, Mahenthiralingam E (2011) Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation. Appl Environ Microbiol 77(13):4527–4538CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ziqiao Li
    • 1
  • Yunge Zhang
    • 1
  • Yuyang Wang
    • 1
  • Rongwu Mei
    • 2
  • Yu Zhang
    • 2
  • Muhammad Zaffar Hashmi
    • 3
  • Hongjun Lin
    • 1
  • Xiaomei Su
    • 1
  1. 1.College of Geography and Environmental ScienceZhejiang Normal UniversityJinhuaChina
  2. 2.Environmental Science Research and Design Institute of Zhejiang ProvinceHangzhouChina
  3. 3.Department of MeteorologyCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations