Skip to main content
Log in

Identification of Major Enzymes Involved in the Synthesis of Diadenosine Tetraphosphate and/or Adenosine Tetraphosphate in Myxococcus xanthus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Myxococcus xanthus generates diadenosine tetraphosphates (Ap4A) and diadenosine pentaphosphates (Ap5A) under various stress conditions. M. xanthus lysyl-tRNA synthetase (LysS) efficiently synthesizes Ap4A from ATP, Ap5A from ATP and adenosine tetraphosphate (Ap4), and Ap4 from ATP and triphosphate. To identify other M. xanthus enzymes that can catalyze Ap4A and Ap4 synthesis, 15 M. xanthus aminoacyl-tRNA synthetases (aaRSs), four acyl-CoA synthetases (Acys), three acetyl-CoA synthetases (Aces), phosphoglycerate kinase (Pgk), and adenylate kinase (Adk) were expressed in Escherichia coli and examined for Ap4A or Ap4 synthetase activity using ATP or ATP and triphosphate as substrates. Among the tested enzymes, LysS had the highest Ap4A synthetase activity. AlaRS, SerRS, and LeuRS1 showed high ADP synthetase activity with ATP as a substrate in the presence of pyrophosphatase, and also demonstrated the ability to produce Ap4 from ATP and triphosphate in the absence of pyrophosphatase. Ap4 formation by AlaRS, SerRS, and LeuRS1 was approximately 4- to 13-fold higher compared with that of Ap4A, suggesting that these enzymes prefer triphosphate over ATP as a substrate in the second reaction. Some of the recombinant M. xanthus Acys and Aces also synthesized Ap4 from ATP and triphosphate. However, Pgk was capable of catalyzing the production of Ap4 from ATP and 3-phosphoglycerate in the presence of Mg2+ and did not require triphosphate, suggesting that this enzyme is mainly responsible for Ap4 synthesis in M. xanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amici A, Grolla AA, Del Grosso E, Bellini R, Bianchi M, Travelli C, Garavaglia S, Sorci L, Raffaelli N, Ruggieri S, Genazzani AA, Orsomando G (2017) Synthesis and degradation of adenosine 5′-tetraphosphate by nicotinamide and nicotinate phosphoribosyltransferases. Cell Chem Biol 24:553–564

    Article  PubMed  CAS  Google Scholar 

  2. Blanquet S, Plateau P, Onesti S (2005) Class II lysyl-tRNA synthetases. In Ibba M, Francklyn C, Cusack S (eds) The aminoacyl-tRNA synthetases. Eurekah, Georgetown, pp 227–240

  3. Blanquet S, Plateau P, Brevet A (1983) The role of zinc in 5′,5′-diadenosine tetraphosphate production by aminoacyl-transfer RNA synthetases. Mol Cell Biochem 52:3–11

    Article  PubMed  CAS  Google Scholar 

  4. Brevet A, Plateau P, Cirakoğlu B, Pailliez JP, Blanquet S (1982) Zinc-dependent synthesis of 5′,5′-diadenosine tetraphosphate by sheep liver lysyl- and phenylalanyl-tRNA synthetases. J Biol Chem 257:14613–14615

    PubMed  CAS  Google Scholar 

  5. Brevet A, Chen J, Lévêque F, Blanquet S, Plateau P (1995) Comparison of the enzymatic properties of the two Escherichia coli lysyl-tRNA synthetase species. J Biol Chem 270:14439–14444

    Article  PubMed  CAS  Google Scholar 

  6. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    Article  PubMed  CAS  Google Scholar 

  7. Fontes R, Sillero MA, Sillero A (1998) Acyl coenzyme A synthetase from Pseudomonas fragi catalyzes the synthesis of adenosine 5′-polyphosphates and dinucleoside polyphosphates. J Bacteriol 130:3152–3158

    Google Scholar 

  8. Fraga H, Fontes R (2011) Enzymatic synthesis of mono and dinucleoside polyphosphates. Biochim Biophys Acta 1810:1195–1204

    Article  PubMed  CAS  Google Scholar 

  9. Goerlich O, Foeckler R, Holler E (1982) Mechanism of synthesis of adenosine (5′) tetraphosphate (5′) adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur J Biochem 126:135–139

    Article  PubMed  CAS  Google Scholar 

  10. Guranowski A, Gunther Sillero MA, Sillero A (1994) Adenosine 5′-tetraphosphate and adenosine 5′-pentaphosphate are synthesized by yeast acetyl coenzyme A synthetase. J Bacteriol 176:2986–2990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hansen S, Lewis K, Vulic M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718–2726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ismail TM, Hart CA, McLennan AG (2003) Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar Typhimurium to invade cultured mammalian cells. J Biol Chem 278:32602–32607

    Article  PubMed  CAS  Google Scholar 

  13. Jakubowski H (1986) Sporulation of the yeast Saccharomyces cerevisiae is accompanied by synthesis of adenosine 5′-tetraphosphate and adenosine 5′-pentaphosphate. Proc Natl Acad Sci USA 83:2378–2382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kimura Y, Tanaka C, Sasaki K, Sasaki M (2017) High concentrations of intracellular Ap4A and/or Ap5A in developing Myxococcus xanthus cells inhibit sporulation. Microbiology 163:86–93

    Article  PubMed  CAS  Google Scholar 

  15. Kupriyanov VV, Ferretti JA, Balaban RS (1986) Muscle adenylate kinase catalyzes adenosine 5′-tetraphosphate synthesis from ATP and ADP. Biochim Biophys Acta 869:107–111

    Article  PubMed  CAS  Google Scholar 

  16. Lee PC, Bochner BR, Ames BN (1983) AppppA, heat-shock stress, and cell oxidation. Proc Nat Acad Sci USA 80:7496–7500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lobatón CD, Vallejo CG, Sillero A, Sillero MAG (1975) Diguanosinetetraphosphatase from rat liver: activity on diadenosine tetraphosphate and inhibition by adenosine tetraphosphate. Eur J Biochem 50:495–501

    Article  PubMed  Google Scholar 

  18. Monds RD, Newell PD, Wagner JC, Schwartzman JA, Lu W, Rabinowitz JD, O’Toole GA (2010) Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways. J Bacteriol 192:3011–3023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Oka M, Takegawa K, Kimura Y (2015) Enzymatic characterization of a class II lysyl-tRNA synthetase, LysS, from Myxococcus xanthus. Arch Biochem Biophys 579:33–39

    Article  PubMed  CAS  Google Scholar 

  20. Oka M, Takegawa K, Kimura Y (2016) Lysyl-tRNA synthetase from Myxococcus xanthus catalyzes the formation of diadenosine penta- and hexaphosphates from adenosine tetraphosphate. Arch Biochem Biophys 604:152–158

    Article  PubMed  CAS  Google Scholar 

  21. Pàlfi Z, Surànyi G, Borbély G (1991) Alterations in the accumulation of adenylylated nucleotides in heavy-metal-ion-stressed and heat-stressed Synechococcus sp. strain PCC 6301, a cyanobacterium, in light and dark. Biochem J 276:487–491

    Article  PubMed  PubMed Central  Google Scholar 

  22. Plateau P, Blanquet S (1982) Zinc-dependent synthesis of various dinucleoside 5′,5′′′-P1,P3-Tri- or 5″,5′′′-P1,P4-tetraphosphates by Escherichia coli lysyl-tRNA synthetase. Biochemistry 21:5273–5279

    Article  PubMed  CAS  Google Scholar 

  23. Sanni A, Mirande M, Ebel J-P, Boulanger Y, Waller J-P, Fasiolo F (1988) Structure and expression of the genes encoding the α and β subunits of yeast phenylalanyl-tRNA synthetase. J Biol Chem 263:15407–15415

    PubMed  CAS  Google Scholar 

  24. Small GD, Cooper C (1966) Studies on the occurrence and biosynthesis of adenosine tetraphosphate. Biochemistry 5:26–33

    Article  PubMed  CAS  Google Scholar 

  25. VanBogelen RA, Vaughn V, Neidhardt FC (1983) Gene for heatinducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol 153:1066–1068

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Whitworth DE (2008) Myxobacteria: multicellularity and differentiation. ASM Press, Washington

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (16K07667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Kimura.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y., Tanaka, C. & Oka, M. Identification of Major Enzymes Involved in the Synthesis of Diadenosine Tetraphosphate and/or Adenosine Tetraphosphate in Myxococcus xanthus. Curr Microbiol 75, 811–817 (2018). https://doi.org/10.1007/s00284-018-1452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1452-x

Navigation