Proteomic Analysis of Normal Expression Differences Exist in Bacillus Subtilis 168 Cultivation

Article
  • 27 Downloads

Abstract

Biological science discovery often involves comparing conditions to a normal state, but little is known about “normal.” Therefore, we used proteomic strategy to compare data from replicate samples of Bacillus subtilis 168 which were grown under identical condition. The results show that 294 differentially expressed proteins were annotated in 88 Gene Ontology functional groups and enriched in 13 KEGG pathways. We assume that normal expression differences are associated with adaptation to diverse environments. Moreover, five proteins (CotY, ThiG, SspA, SspB, and SspE) and their related genes were identified as having significantly different expressions at translational and transcriptional levels. Most of them are related to stress resistance and germination, indicating that normal expression differences can be regarded as a rapid response mechanism for survival. However, unstable protein expression may cause some fermentative problems that were observed in histidine and sulfur metabolism pathways. Our study facilitates dissection of the influence of biological variance on cultivation safety and stability.

Notes

Acknowledgements

This research was supported by National Science Foundation of China (31401592).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2018_1451_MOESM1_ESM.xlsx (465 kb)
Supplementary material 1 (XLSX 465 KB)

References

  1. 1.
    Budde I, Steil L, Scharf C, Völker U, Bremer E (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152(Pt 3):831–853CrossRefPubMedGoogle Scholar
  2. 2.
    Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1–2):131–149CrossRefPubMedGoogle Scholar
  3. 3.
    Charles M (1985) Fermentation scale-up: problems and possibilities. Trends Biotechnol 3(6):134–139CrossRefGoogle Scholar
  4. 4.
    Chen RX, Song HY, Dong YY, Hu C, Zheng QD, Xue TC, Liu XH, Zhang Y, Chen J, Ren ZG (2014) Dynamic expression patterns of differential proteins during early invasion of hepatocellular carcinoma. PLoS ONE 9(3):e88543CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Diaz-Ricci JC, Regan L, Bailey JE (1991) Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of escherichia coli. Biotechnol Bioeng 38(11):1318–1324CrossRefPubMedGoogle Scholar
  6. 6.
    Du C, Liang JR, Chen DD, Xu B, Zhuo WH, Gao YH, Chen CP, Bowler C, Zhang W (2014) iTRAQ-based proteomic analysis of the metabolism mechanism associated with silicon response in the marine diatom Thalassiosira pseudonana. J Proteome Res 13(2):720–734CrossRefPubMedGoogle Scholar
  7. 7.
    Hajo Z, Christoph E, Lars W, Bernd B, Ralf R (2011) Biological versus technical variability in 2-D DIGE experiments with environmental bacteria. Proteomics 11(16):3380–3389CrossRefGoogle Scholar
  8. 8.
    Hao Z, Yan L, Liu J, Song F, Zhang J, Li X (2015) Extraction of antibiotic zwittermicin A from Bacillus thuringiensis by macroporous resin and silica gel column chromatography. Biotechnol Appl Biochem 62(3):369–374.  https://doi.org/10.1002/bab.1277 CrossRefPubMedGoogle Scholar
  9. 9.
    Helmann JD, Wu MFW, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C (2001) Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183(24):7318–7328CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Higdon R, Kolker E (2015) Can “normal” protein expression ranges be estimated with high-throughput proteomics? J Proteome Res 14(6):2398–2407.  https://doi.org/10.1021/acs.jproteome.5b00176 CrossRefPubMedGoogle Scholar
  11. 11.
    Johnson MJ, Todd SJ, Ball DA, Shepherd AM, Sylvestre P, Moir A (2006) ExsY and CotY are required for the correct assembly of the exosporium and spore coat of Bacillus cereus. J Bacteriol 188(22):7905–7913CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kamran A, Bibi Z, Aman A, Qader SAU (2016) Lactose hydrolysis approach: Isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatal Agric Biotechnol 5:99–103.  https://doi.org/10.1016/j.bcab.2015.12.010 Google Scholar
  13. 13.
    Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256CrossRefPubMedGoogle Scholar
  14. 14.
    Maaβ S, Wachlin G, Bernhardt J, Eymann C, Fromion V, Riedel K, Becher D, Hecker M (2014) Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis. Mol Cell Proteomics 13(9):2260–2276CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Malherbe S, Bauer FF, Toit MD (2007) Understanding problem fermentations: a review. S Afr J Enol Viticult 28(2):169–186Google Scholar
  16. 16.
    Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54(3):287–301CrossRefPubMedGoogle Scholar
  17. 17.
    Park JH, Dorrestein PC, Zhai H, Kinsland C, And ML, Begley TP (2003) Biosynthesis of the thiazole moiety of thiamin pyrophosphate (Vitamin B1)†. Biochemistry 42(42):12430–12438CrossRefPubMedGoogle Scholar
  18. 18.
    Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183(19):5617–5631CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ploss TN, Reilman E, Monteferrante CG, Denham EL, Piersma S, Lingner A, Vehmaanpera J, Lorenz P, van Dijl JM (2016) Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions. Microb Cell Fact 15:57.  https://doi.org/10.1186/s12934-016-0455-1 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Price CW, Fawcett P, Su N, Murphy CK, Youngman P (2001) Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41(4):757–774CrossRefPubMedGoogle Scholar
  21. 21.
    Reder A, Höper D, Weinberg C, Gerth U, Fraunholz M, Hecker M (2008) The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis. Mol Microbiol 69(5):1104–1120CrossRefPubMedGoogle Scholar
  22. 22.
    Reis MAM, Almeida JS, Lemos PC, Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40(5):593–600CrossRefPubMedGoogle Scholar
  23. 23.
    Sanchez-Salas JL, Santiago-Lara ML, Setlow B, Sussman MD, Setlow P (1992) Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J Bacteriol 174(3):807–814CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17.  https://doi.org/10.1139/w03-076 CrossRefPubMedGoogle Scholar
  25. 25.
    Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100(5):2107–2119.  https://doi.org/10.1007/s00253-015-7256-z CrossRefPubMedGoogle Scholar
  26. 26.
    Srianta I, Nugerahani I, Sutedja AM, Widharna RM (2014) Optimization of drying temperature and water extraction time of Monascus-fermented durian seed for the Monacolin K content using response surface methodology. Int Food Res J 21(1):73–75Google Scholar
  27. 27.
    Sun H, Liu X, Li F, Wei L, Jing Z, Xiao Z, Shen L, Ying L, Wang F, Yang J (2017) First comprehensive proteome analysis of lysine crotonylation in seedling leaves of Nicotiana tabacum. Sci Rep 7(1):3013CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sun X, Yang P, Xuan LI, Wang Y (2010) Study Progress of fermentation conditions of L-histidine and screening of high productive strain. China BrewingGoogle Scholar
  29. 29.
    Valcu CM, Valcu M (2007) Reproducibility of two-dimensional gel electrophoresis at different replication levels. J Proteome Res 6(12):4677–4683CrossRefPubMedGoogle Scholar
  30. 30.
    Valcu CM, Reger K, Ebner J, Gorlach A (2012) Accounting for biological variation in differential display two-dimensional electrophoresis experiments. J Proteomics 75(12):3585–3591.  https://doi.org/10.1016/j.jprot.2012.04.003 CrossRefPubMedGoogle Scholar
  31. 31.
    Voigt B, Schroeter R, Jurgen B, Albrecht D, Evers S, Bongaerts J, Maurer KH, Schweder T, Hecker M (2013) The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon. Proteomics 13(14):2140–2161.  https://doi.org/10.1002/pmic.201200297 CrossRefPubMedGoogle Scholar
  32. 32.
    Wolff S, Otto A, Albrecht D, Zeng JS, Büttner K, Glückmann M, Hecker M, Becher D (2006) Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study. Mol Cell Proteomics Mcp 5(7):1183–1192CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao H, Zhang Y, Yong K, Kim S, Kim JJ, Kim KM, Yoshizawa J, Fan LY, Cao CX, Wong DTW (2016) Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci Rep 6:22165CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Xie L, Liu W, Li Q, Chen S, Xu M, Huang Q, Zeng J, Zhou M, Xie J (2015) The first succinyl-proteome profiling of extensively drug resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J Proteome Res 14(1):107CrossRefPubMedGoogle Scholar
  35. 35.
    Zech H, Echtermeyer C, Wohlbrand L, Blasius B, Rabus R (2011) Biological versus technical variability in 2-D DIGE experiments with environmental bacteria. Proteomics 11(16):3380–3389.  https://doi.org/10.1002/pmic.201100071 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang J, Fitzjames PC, Aronson AI (1993) Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175(12):3757–3766CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhou Y, Yu WB, Ye BC (2011) Variation of gene expression in Bacillus subtilis samples of fermentation replicates. Bioprocess Biosyst Eng 34(5):569–579CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of Food Science and Technology, School of BioengineeringEast China University of Science and TechnologyShanghaiChina
  3. 3.School of Chemistry and Chemical EngineeringShihezi UniversityXinjiangChina

Personalised recommendations