Skip to main content
Log in

Variations in Endosymbiont Infection Between Buprofezin-Resistant and Susceptible Strains of Laodelphax striatellus (Fallén)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The endosymbionts Wolbachia and Rickettsia have been shown to be correlated with the insecticide resistance of mosquito and whitefly. The small brown planthopper (SBPH), Laodelphax striatellus, harbours many species of endosymbionts, and has developed a high resistance to buprofezin in China. In this study, we examined the species and the infection incidences of endosymbionts in a buprofezin-resistant (BR) strain, a buprofezin-susceptible (BS) strain, and the BR strain after exposure to buprofezin, and we also investigated the change in buprofezin susceptibility after removal of Wolbachia from the BR strain. The results showed that Wolbachia infection incidences were 100% in both the BR and BS strains, but the Wolbachia density in the BR strain was significantly higher than that in the BS strain. There were no significant differences in Arsenophonus infection incidence between the two strains. However, the infection incidence of Serratia and double infection incidence of Serratia + Wolbachia in the BR strain were significantly higher than that in the BS strain. After the BR strain was exposed to 1200 mg/L buprofezin, the infection incidence of Arsenophonus in the surviving individuals increased, and the infection rate of Serratia did not differ, but the double infection incidence of Serratia + Wolbachia decreased. And when a Wolbachia-infected line originating from the BR strain was cleared of Wolbachia, its susceptibility to buprofezin increased. The results suggest that Serratia and Wolbachia infection might improve the buprofezin resistance of SBPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alonso C, Warnecke F, Amann R, Pernthaler J (2007) High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 9:1253–1266

    Article  CAS  PubMed  Google Scholar 

  2. Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M (2002) High Wolbachia density in insecticide-resistant mosquitoes. Proc R Soc B 269:1413–1416

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17:348–354

    Article  CAS  PubMed  Google Scholar 

  4. Chen DQ, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323

    Article  Google Scholar 

  5. Duron O, Labbé P, Berticat C, Rousset F, Guillot S, Raymond M, Mylène W (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314

    Article  CAS  PubMed  Google Scholar 

  6. Gan BY, Zhou WG, Feng LB, Shen DL, Ben LC (2002) Infection of Wolbachia in three planthopper species in China. Acta Entomol Sin 45:14–17

    CAS  Google Scholar 

  7. Gao BL, Wu J, Huang SJ, Mu LF, Han JZ (2008) Insecticide resistance in field populations of Laodelphax striatellus Fallén (Homoptera: Delphacidae) in China and its possible mechanisms. Int J Pest Manag 54:13–19

    Article  CAS  Google Scholar 

  8. Ghanim M, Kontsedalov S (2009) Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag Sci 65:939–942

    Article  CAS  PubMed  Google Scholar 

  9. Guo H, Qu Y, Liu X, Zhong W, Fang J (2014) Female-biased symbiont and tomato yellow leaf curl virus infection in Bemisia tabaci. PLoS ONE. https://doi.org/10.1371/journal.pone.0084538

    Google Scholar 

  10. Jiggins FM, Hurst GDD (2011) Rapid insect evolution by symbiont transfer. Science 332:185–186

    Article  CAS  PubMed  Google Scholar 

  11. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109:8618–8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kisimoto R (1967) Genetic variation in the ability of a planthopper vector Laodelphax striatellus (Fallén) to acquire the rice stripe virus. Virology 32:144–152

    Article  CAS  PubMed  Google Scholar 

  13. Koch C, Rainey FA, Stackebrandt E (1994) 16S rDNA studies on members of Arthrobacter and Micrococcus: an aid for their future taxonomic restructing. FEMS Microbiol Lett 123:167–171

    Article  CAS  Google Scholar 

  14. Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  CAS  PubMed  Google Scholar 

  15. Liu YK (2011) Comparative studies on host fitness, defensive enzymes and symbionts of the three rice planthoppers. Dissertation, Chinese Academy of Agricultural Sciences

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  17. Łukasik P, Asch MV, Guo HF, Ferrari J, Godfray HCJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218

    Article  PubMed  Google Scholar 

  18. Łukasik P, Guo H, Asch MV, Ferrari J, Godfray HCJ (2013) Protection against a fungal pathogen conferred by the facultative symbionts Rickettsia and Spiroplasma is expressed in multiple host genotypes and species and is not influenced by co-infection with another symbiont. J Evolut Biol 16:2654–2661

    Article  Google Scholar 

  19. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  20. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  21. Nagata T (1986) Timing of buprofezin application for control of the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool 21:357–362

    Article  CAS  Google Scholar 

  22. Noda H, Koizumi Y, Zhang Q, Deng K (2001) Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol 31:727–737

    Article  CAS  PubMed  Google Scholar 

  23. Nováková E, Hypša V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  25. Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc B 273:1273–1280

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pang ST, Jiang TT, Wang L, Shi ZH (2010) An overview of research on symbiont Cardinium in arthropod. Chin J Biolog Control 26:217–223

    Google Scholar 

  28. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B 273:603–610

    Article  PubMed  Google Scholar 

  29. Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781–1781

    Article  CAS  PubMed  Google Scholar 

  30. Vanbroekhoven K, Ryngaert A, Wattiau P, Mot RD, Springael D (2004) Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR–DGGE fingerprinting. FEMs Microbiol Ecol 50:37–50

    Article  CAS  PubMed  Google Scholar 

  31. Wang LH, Fang JC, Liu BS (2008) Relative toxicity of insecticides to Laodelphax striatellus (Fallén) (Homoptera: Delphacidae) and the resistance of field populations from different areas of East China. Acta Entomol Sin 51:930–937

    CAS  Google Scholar 

  32. Wang WX, Luo J, Lai FX, Fu Q (2010) Identification and phylogenetic analysis of symbiotic bacteria Arsenophonus from the rice brown planthopper, Nilaparvata Lugens (Stål) (Homoptera: Delphacidae). Acta Entomol Sin 53:647–654

    CAS  Google Scholar 

  33. Wang YH, Gao CF, Xu ZP, Zhu YC, Zhang JS, Li WH, Dai DJ, Lin YW, Zhou WJ, Shen JL (2008) Buprofezin susceptibility survey, resistance selection and preliminary determination of the resistance mechanism in Nilaparvata lugens (Homoptera: Delphacidae). Pest Manag Sci 64:1050–1056

    Article  CAS  PubMed  Google Scholar 

  34. Werren JH, Skinner SW, Huger AM (1986) Male-killing bacteria in a parasitic wasp. Science 231:990–992

    Article  CAS  PubMed  Google Scholar 

  35. Zhang YL, Guo HF, Yang Q, Li S, Wang LH, Zhang GF, Fang JC (2012) Overexpression of a P450 gene CYP6CW1 in buprofezin-resistant Laodelphax striatellus (Fallén). Pest Biochem Physiol 104:277–282

    Article  CAS  Google Scholar 

  36. Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B 265:509–515

    Article  CAS  Google Scholar 

  37. Zhu H, Sun SJ, Dang HY (2008) PCR detection of Serratia spp. using primers targeting pfs and luxS genes involved in AI-2-dependent quorum sensing. Curr Microbiol 57:326–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants from the National Natural Science Foundation of China (31672027) and the Independent Innovation Fund of Agricultural Science and Technology in Jiangsu province, China (cx(16)1001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Liu or Huifang Guo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, X. & Guo, H. Variations in Endosymbiont Infection Between Buprofezin-Resistant and Susceptible Strains of Laodelphax striatellus (Fallén). Curr Microbiol 75, 709–715 (2018). https://doi.org/10.1007/s00284-018-1436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1436-x

Navigation