Skip to main content
Log in

Microbial Diversity Profiling of Polysaccharide (gum)-Producing Bacteria Isolated from a South African Sugarcane Processing Factory

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Polysaccharide (gum)-producing bacteria are responsible for severe economic losses in the sugarcane processing industry. Increased polysaccharide levels in raw sugar are normally an indication that biodeterioration occurred in the cane, soon after harvesting. Once in the sugar processing plant, the cell numbers of gum-producing bacteria escalate and may reach levels difficult to control. We have isolated 430 gum-producing bacteria from sugarcane and different sampling points in a South African sugarcane processing factory. As expected, high cell numbers of gum-producing bacteria were isolated from the factory during a time when sugar with a high dextran content was produced. What we did not expect was to find the same species in the factory at a time when sugar with a low dextran content was produced. Phylogenetic analyses of the 16S rRNA gene sequences differentiated the gum-producing bacteria into four genera and nine species. The majority of these isolates belonged to the genus Weissella (47%), followed by members of Bacillus (24%), Leuconostoc (19%) and Lactobacillus (10%). For the first time, we report on the isolation of Weissella confusa, Weissella cibaria and Bacillus amyloliquefaciens from a sugarcane processing factory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  2. Anon (2015) ICUMSA method GS1/2/9–15 the determination of dextran in raw sugar by a modified alcohol haze method—accepted. In: ICUMSA Method Book. Verlag Dr Albert Bartens KG, Berlin

    Google Scholar 

  3. Antier P (1996) Microbiological control in a cane sugar mill: implications on sugar quality and on losses. Proc S Afr Sug Technol Ass 70:185–188

    Google Scholar 

  4. Bacci JC, Guichard V (1994) Some aspects of cane deterioration in Reunion Island. Proc S Afr Sug Technol Ass 68:97–100

    Google Scholar 

  5. Ben Amor K, Vaughan EE, de Vos WM (2007) Advanced molecular tools for the identification of lactic acid bacteria. J Nutr 137(3):741S–747S

    Article  CAS  PubMed  Google Scholar 

  6. Berendsen EM, Koning RA, Boekhorst J, de Jong A, Kuipers OP, Wells-Bennik MHJ (2016) High-level heat resistance of spores of Bacillus amyloliquefaciens and Bacillus licheniformis results from the presence of a spoVA operon in a Tn1546 transposon. Front Microbiol 7:10. https://doi.org/10.3389/fmicb.2016.01912

    Article  Google Scholar 

  7. Bevan D, Bond J (1971) Microorganisms in field and mill—a preliminary study. Proc Qld Soc Sugar Cane Technol 38:137–143

    Google Scholar 

  8. Chirife J, Herszage L, Joseph A, Kohn ES (1983) In vitro study of bacterial growth inhibition in concentrated sugar solutions: microbiological basis for the use of sugar in treating infected wounds. Antimicrob Agents Chemother 23(5):766–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17(4):840–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Collins MD, Samelis J, Metaxopoulos J, Wallbanks S (1993) Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603

    Article  CAS  PubMed  Google Scholar 

  11. Cuddihy JA Jr, Porro ME, Raiih JS (2001) The presence of total polysaccharides in sugar production and methods for reducing their negative effects. J Am Soc Sug Cane Technol 21:73–91

    Google Scholar 

  12. Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I (2013) Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PLoS ONE 8(4):e62044. https://doi.org/10.1371/jpurnal.pone.0062044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Egan B (1968) Post-harvest deterioration losses in sugarcane in Queensland. Proc Int Soc Sug Cane Technol 13:1729–1735

    Google Scholar 

  14. Egan BT, Rehbein CA (1963) Bacterial deterioration of mechanically harvested cut-up sugar cane during storage over weekends. Proc Qld Soc Sug Cane Technol 30:11–25

    Google Scholar 

  15. Eggleston G, Grisham M (2003) Oligosaccharides in cane and their formation on cane deterioration. In: Eggleston G, Côté G (eds) Oligosaccharides in food and agriculture. American Chemical Society, Washington, DC, pp 211–232

    Chapter  Google Scholar 

  16. Eggleston G, Harper W (2006) Determination of sugarcane deterioration at the factory: development of a rapid, easy and inexpensive enzymatic method to measure mannitol. Food Chem 98:366–372

    Article  CAS  Google Scholar 

  17. Eggleston G, Legendre BL, Tew T (2005) New insights on factory indicators of freeze deteriorated cane. Proc Int Soc Sug Cane Technol 25:9–24

    Google Scholar 

  18. Eggleston G, Monge A, Montes B, Stewart D (2009) Application of dextranases in sugarcane factory: overcoming practical problems. Sugar Technol 11(2):135–141

    Article  CAS  Google Scholar 

  19. Eggleston G, Morel du Boil PG, Walford SN (2008) A review of sugarcane deterioration in the United States and South Africa. Proc S Afr Sug Technol Ass 81:72–85

    Google Scholar 

  20. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  21. Foster DH, Inkerman PA, McNeil K (1980) Studies on cane deterioration in Australia. Proc Int Soc Sug Cane Technol 17:2204–2220

    Google Scholar 

  22. Godshall MA, Legendre BL, Clarke MA, Miranda XM, Blanco RS (1996) Starch, polysaccharides and proanthocyanidin in Louisiana sugarcane varieties. Int Sugar J 98(1168E):144–148

    CAS  Google Scholar 

  23. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual, vol 3, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  25. Hector S, Willard K, Bauer R, Mulako I, Slabbert E, Kossmann J, George GM (2015) Diverse exopolysaccharide producing bacteria isolated from milled sugarcane: implications for cane spoilage and sucrose yield. PLoS ONE 10(12):1–10. https://doi.org/10.1371/journal.pone.0145487

    Article  CAS  Google Scholar 

  26. Hong S, Farrance CE (2015) Is it essential to sequence the entire 16S rRNA gene for bacterial identification? Am Pharm Rev 18(7):13 pp

    Google Scholar 

  27. Imrie FKE, Tilbury RH (1972) Polysaccharides in sugar cane and its products. Sugar Technol Rev 1:291–361

    CAS  Google Scholar 

  28. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identificaiton in the diagnostic laboratory: pluses, perils and pitfalls. J Clin Microbiol 45(9):2761–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jimenez ER (2005) The dextranase along sugar-making industry. Biotecnologia Aplicada 22:20–27

    Google Scholar 

  30. Kalidass N, Singh I, Steyn AB (1996) An investigation into the low pol factor and the purity difference between mixed juice and cane (DAC) at the Transvaal Suiker Beperk Malelane factory. Proc S Afr Sug Technol Ass 70:179–184

    Google Scholar 

  31. Khalikova E, Susi P, Korpela T (2005) Microbial dextran-hydrolysing enzymes: fundamentals and applications. Microbiol Mol Biol Rev 69(2):306–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York

    Google Scholar 

  35. Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272

    Article  CAS  PubMed  Google Scholar 

  36. Lillehoj E, Clarke M, Tsang W (1984) Leuconostoc spp. in sugarcane processing samples. Proc Sug Proc Res Conf 1984:141–151

    Google Scholar 

  37. Lionnet GRE (1986) Post-harvest deterioration of whole stalk sugarcane. Proc S Afr Sug Technol Ass 60:52–557

    Google Scholar 

  38. Lionnet GRE (1996) Mud filtration. Proc S Afr Sug Technol Ass 70:280–282

    Google Scholar 

  39. Logan NA, De Vos P (2009) The Firmicutes. In: De Vos P, Garrity GM, Jones D et al (eds) Bergey’s Manual of Systematic Bacteriology, vol 3, 2nd edn. Springer, New York, p 1450

    Google Scholar 

  40. Mackrory LM, Cazalet JS, Smith IA (1984) A comparison of the microbiological activity associated with milling and cane diffusion. Proc S Afr Sug Technol Ass 58:86–89

    CAS  Google Scholar 

  41. Malang SK, Maina NH, Schwab C, Tenkanen M, Lacroix C (2015) Characterisation of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiol 46:418–427

    Article  CAS  PubMed  Google Scholar 

  42. Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McNeil K, Bond J (1980) The identification, enumeration and properties of microflora of sugarcane, cane juice and processing liquors. Sug Res Inst Tech Rep (Mackay) (154):78 pp

  44. Moodley M, Khomo N (2018) Dextran: a refiner’s perspective. Proc S Afr Sug Technol Ass 91:318–329

    Google Scholar 

  45. Morel du Boil PG (1995) Cane deterioration - oligosaccharide formation and some processing implications. Proc S Afr Sug Technol Ass 69:146–154

    Google Scholar 

  46. Morel du Boil PG, Wienese S (2002) Enzymatic reduction of dextran in process—laboratory evaluation of dextranases. Proc S Afr Sug Technol Ass 76:435–443

    Google Scholar 

  47. Morel du Boil PG, Wienese S, Schoonees BM (2005) The cause of sarkaran in sugarcane. Proc S Afr Sug Technol Ass 79:48–62

    Google Scholar 

  48. Odeniyi OA, Amoo OT (2015) Effect on environmental variables on biofilm formation by selected Gram-positive bacteria. NY Sci J 8(2):62–69

    Google Scholar 

  49. Patel JB (2001) 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn 6:313–321

    Article  CAS  PubMed  Google Scholar 

  50. Perry LA, Hunter C, Watt DA (2007) Impact of post-harvest delays and temperature on cane deterioration. Proc Int Soc Sug Cane Technol 26:1026–1030

    Google Scholar 

  51. Rainey TJ, Thaval OP, Rackemann DW (2014) Developments in mud filtration technology in the sugarcane industry. In: Webb E (ed) Sugarcane: production, consumption and agricultural management systems. Nova Science Publishers Inc., New York, pp 263–292

    Google Scholar 

  52. Rein P (2007) Cane sugar engineering. Verlag Dr. Albert Bartens KG, Berlin

    Google Scholar 

  53. Rein PW (1995) A comparison of cane diffusion and milling. Proc S Afr Sug Technol Ass 69:196–200

    Google Scholar 

  54. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  55. Solomon S (2009) Post-harvest deterioration of sugarcane. Sugar Tech 11(2):109–123

    Article  CAS  Google Scholar 

  56. Solomon S (2000) Post-harvest deterioration of sugarcane and its milling consequences. Sugar Tech 2(1&2):1–18

    Article  Google Scholar 

  57. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tian F, Inthanavong L, Karboune S (2011) Purification and characterisation of levansucrases from Bacillus amyloliquefaciens in intra- and extracellular forms uselful for the synthesis of levan and fructooligosaccharides. Biosci Biotechnol Biochem 75(10):1929–1938

    Article  CAS  PubMed  Google Scholar 

  59. Tilbury R (1970) Biodeterioration of harvested sugarcane in Jamaica. University of Aston, Birmingham

    Google Scholar 

  60. Torino MI, Font de Valdez G, Mozzi F (2015) Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol 6:834. https://doi.org/10.3389/fmicb.2015.00834

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tsuchiya HM, Koepsell HJ, Corman J, Bryant G, Bogard MO, Feger VH, Jackson RW (1952) The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J Bacteriol 64:521–526

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Euk Microbiol 46:327–338

    Article  CAS  PubMed  Google Scholar 

  63. van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, Ineke GH, van Geel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70(1):157–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Warth AD (1978) Relationships between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species. J Bacteriol 134(3):699–705

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wolf BF, Fogler HS (2004) Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: suboptimal pH growth inhibition of a lactic acid bacterium. Biotechnol Bioeng 89(1):96–101

    Article  CAS  Google Scholar 

  66. Wood RA (1976) Cane deterioration as affected by billet size, delay in milling and other factors. Proc S Afr Sug Technol Ass 50:12–17

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge and thank Dr Deborah Sweby (South African Sugarcane Research Institute, Mt Edgecombe, South Africa) for the DNA sequencing analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M. T. Dicks.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 196 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nel, S., Davis, S.B., Endo, A. et al. Microbial Diversity Profiling of Polysaccharide (gum)-Producing Bacteria Isolated from a South African Sugarcane Processing Factory. Curr Microbiol 76, 527–535 (2019). https://doi.org/10.1007/s00284-018-01625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-01625-0

Navigation