Current Microbiology

, Volume 75, Issue 5, pp 588–596 | Cite as

Bioprospection of Culturable Endophytic Fungi Associated with the Ornamental Plant Pachystachys lutea

  • Amanda da Silva Ribeiro
  • Julio Cesar Polonio
  • Alessandra Tenório Costa
  • Caroline Menicoze dos Santos
  • Sandro Augusto Rhoden
  • João Lúcio Azevedo
  • João Alencar Pamphile


Endophytes are fungi and bacteria that inhabit plant tissues without causing disease. Endophytes have characteristics that are important for the health of the plant and have been isolated from several plants of economic and medicinal interest but rarely from ornamental plants. The current study isolates and identifies endophytic fungi from the leaves of Pachystachys lutea and evaluates the antagonistic activity of these endophytes as well as cellulase production by the endophytes. Fungi were isolated by fragmentation from surface-disinfected leaves and were identified by the sequencing of the ITS gene and the genes coding for EF 1-α and β-tubulin followed by multilocus sequence analysis. Molecular taxonomic analysis revealed that 78% of the identified fungi belonged to the genus Diaporthe. We also identified strains belonging to the genera Colletotrichum, Phyllosticta, Xylaria, Nemania, and Alternaria. Most of the strains tested were able to inhibit the growth of pathogenic fungi, especially PL09 (Diaporthe sp.), which inhibited the growth of Colletotrichum sp., and PL03 (Diaporthe sp.), which inhibited the growth of Fusarium oxysporum. The production of cellulase ranged from 0.87 to 1.60 μmol/min. Foliar endophytic fungal isolates from P. lutea showed promising results for the in vitro control of plant pathogens and for cellulase production. This paper is the first report on culturable endophytic fungi isolated from the ornamental plant P. lutea.



The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the Master’s scholarship and CAPES/PNPD-UEM post-doctoral scholarship and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico—(311534/2014-7; 447265/2014-8) and the Fundação Araucária (276/2014) for financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

284_2017_1421_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1648 KB)


  1. 1.
    Almeida TT, Orlandelli RC, Azevedo JL, Pamphile JA (2015) Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the Upper Parana River floodplain, Brazil. Genet Mol Res 14(2):4920–4931. CrossRefPubMedGoogle Scholar
  2. 2.
    Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845. CrossRefPubMedGoogle Scholar
  3. 3.
    Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol 21:51–66. CrossRefGoogle Scholar
  4. 4.
    Badalyan SM, Innocenti G, Garibyan NG (2002) Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathol Mediterr 41:200–225Google Scholar
  5. 5.
    Bayman P, Lebro LL, Tremblay RL, Lodge DJ (1997) Variation in endophytic fungi from roots and leaves of Lepenthes (Orchidaceae). New Phytol 135:143–149CrossRefGoogle Scholar
  6. 6.
    Bogner CW, Kariuki GM, Elashry A, Sichtermann G, Buch AK, Mishra B, Thines M, Grundler FMW, Schouten A (2016) Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol Progress 15:30. CrossRefGoogle Scholar
  7. 7.
    Brum MCP, Araújo WL, Maki CS, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (Niagara Rosada) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11(4):4187–4197. CrossRefPubMedGoogle Scholar
  8. 8.
    Campanile G, Ruscelli A, Luisi N (2007) Antagonistc activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta test. Eur J Plant Pathol 117:237–246. CrossRefGoogle Scholar
  9. 9.
    Castellani A (1967) Maintenance and cultivation of common pathogenic fungi in distilled water. J Trop Med Hyg 42:181–184Google Scholar
  10. 10.
    Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59. CrossRefPubMedGoogle Scholar
  11. 11.
    Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, Souza CGM et al (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41(10):1467–1478. CrossRefPubMedGoogle Scholar
  12. 12.
    Fan X, Yang R, Qiu S, Cai X, Zou H, Hu F (2016) The endo-β-1,4-glucanase of Bacillus amyloliquefaciens Is required for optimum endophytic colonization of plants. J Microbiol Biotechnol 26(5):946–952. CrossRefPubMedGoogle Scholar
  13. 13.
    Felber AC, Orlandelli RC, Rhoden SA, Garcia A, Costa AT, Azevedo JL et al (2015) Bioprospecting foliar endophytic fungi of Vitis labrusca Linnaeus, Bordô and Concord cv. Ann Microbiol 66:765–775. CrossRefGoogle Scholar
  14. 14.
    Ferreira DF (2008) SISVAR: um programa para análise e ensino de estatística. Rev Científica Symp 6:36–41Google Scholar
  15. 15.
    Ferreira MC, Cantrell CL, Wedge DE, Gonçalves VN, Jacob MR, Khan S et al (2017) Diversity of the endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantean from the endangered Brazilian rupestrian grasslands. Biochem Syst Ecol 71:163–169. CrossRefGoogle Scholar
  16. 16.
    Fouda AH, Hassan SE, Eid AM, Ewais EE (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104. Google Scholar
  17. 17.
    Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351Google Scholar
  18. 18.
    Garcia A, Rhoden SA, Rubin Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148. CrossRefPubMedGoogle Scholar
  19. 19.
    Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268CrossRefGoogle Scholar
  20. 20.
    Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–41. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gonzaga LL, Costa LE, Santos TT, Araujo EF, Queiroz MV (2014) Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 118:485–496. CrossRefPubMedGoogle Scholar
  22. 22.
    Gutiérrez-Rojas I, Moreno-Sarmientoa N, Montoya D (2015) Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Rev Iberoam Micol 32:1–12. CrossRefPubMedGoogle Scholar
  23. 23.
    Han JH, Chon JK, Ahn JH, Choi IY, Lee YH, Kim KS (2016) Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom Data 8:45–46. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290. CrossRefGoogle Scholar
  25. 25.
    Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298. CrossRefPubMedGoogle Scholar
  26. 26.
    Leite TS, Cnossen-Fassoni A, Pereira OL, Mizubuti ESG, Araujo EF, Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51:56–69. CrossRefGoogle Scholar
  27. 27.
    Li G, Kusari S, Kusari P, Kayser O, Spiteller M (2015) Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J Nat Prod 78(8):2128 – 2132.
  28. 28.
    McGovern RJ (2015) Management of tomato diseases caused by Fusarium oxysporum. Crop Prot 73:78–92. CrossRefGoogle Scholar
  29. 29.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. CrossRefGoogle Scholar
  30. 30.
    Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  31. 31.
    Onofre SB, Mattiello SP, Silva GC, Groth D, Malagi I (2013) Production of cellulases by the endophytic fungus Fusarium oxysporum.. Journal of Microbiology Research 3(4):131–134. CrossRefGoogle Scholar
  32. 32.
    Orlandelli RC, Almeida TT, Alberto RN, Polonio JC, Azevedo JL, Pamphile J (2015) Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz J Microbiol 46(2):359–366. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pal A, Paul AK (2013) Bacterial endophytes of the medicinal herb Hygrophila spinosa T. Anders and their antimicrobial activity. Br J Pharm Res 3:795–806CrossRefGoogle Scholar
  34. 34.
    Pamphile JA, Azevedo JL (2002) Molecular characterization of endophytic strains of Fusarium verticillioides (= Fusarium moniliforme) from maize (Zea mays. L). World J Microb Biotechnol 18:391–396. CrossRefGoogle Scholar
  35. 35.
    Panka D, Piesik D, Jeske M, Baturo-Ciesniewska A (2013) Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. J Plant Physiol 170(11):1010–1019. CrossRefPubMedGoogle Scholar
  36. 36.
    Paulsen E, Andersen SL, Andersen KE (2009) Occupational contact dermatitis from golden shrimp plant (Pachystachys lutea). Contact Dermatitis 60(5):293–294. CrossRefPubMedGoogle Scholar
  37. 37.
    Polonio JC, Almeida TT, Garcia A, Mariucci GE, Azevedo JL, Rhoden SA et al (2015) Biotechnological prospecting of foliar endophytic fungi of guaco (Mikania glomerata Spreng.) with antibacterial and antagonistic activity against phytopathogens. Genet Mol Res 14(3):7297–7309. CrossRefPubMedGoogle Scholar
  38. 38.
    Polonio JC, Ribeiro MAS, Rhoden SA, Sarragiotto MH, Azevedo JL, Pamphile JA (2016) 3-Nitropropionic acid production by the endophytic Diaporthe citri: Molecular taxonomy, chemical characterization, and quantification under pH variation. Fungal Biol 120:1600–1608. CrossRefPubMedGoogle Scholar
  39. 39.
    Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315. CrossRefPubMedGoogle Scholar
  40. 40.
    Prada H, Ávila L, Sierra R, Bernal A, Restrepo S (2009) Caracterización morfológica y molecular del antagonismo entre el endofito Diaporthe sp. aislado de frailejón (Espeletia sp.) y el fitopatógeno Phytophthora infestans. Rev Iberoam Micol 26:198–201. CrossRefPubMedGoogle Scholar
  41. 41.
    Rambaut A (2009) FigTree v1. 3.1: Tree figure drawing tool.
  42. 42.
    Rhoden SA, Garcia A, Rubin Filho CJ, Azevedo JL, Pamphile JA (2012) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11(3):2513–2522. CrossRefPubMedGoogle Scholar
  43. 43.
    Romeralo C, Santamaria O, Pando V, Diez JJ (2015) Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biol Control 80:30–39. CrossRefGoogle Scholar
  44. 44.
    Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujo WL, Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom Disease. Int J Biol Sci 1:24–33CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Santos TT, Leite TS, Queiroz CB, Araújo EF, Pereira OL, Queiroz MV (2016) High genetic variability in endophytic fungi from the genus Diaporthe isolated from common bean (Phaseolus vulgaris L.). J Appl Microbiol 120:388–401. CrossRefPubMedGoogle Scholar
  47. 47.
    Santoyoa G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. CrossRefGoogle Scholar
  48. 48.
    Souza HQ, Oliveira LA, Andrade JS (2008) Seleção de Basidiomycetes da Amazônia para produção de enzimas de interesse biotecnológico. Ciência Tecnol Alimentos 28:116–124CrossRefGoogle Scholar
  49. 49.
    Specian V, Sarragiotto MH, Pamphile JA, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43(3):1174–1182. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tanney JB, McMullin DR, Green BD, Miller JD, Seifert KA (2016) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol. PubMedGoogle Scholar
  51. 51.
    Tao G, Liu ZY, Hyde KD, Liu XZ, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122Google Scholar
  52. 52.
    Terhonen E, Sipari N, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway Spruce. Biol Control 99:53–63. CrossRefGoogle Scholar
  53. 53.
    Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180. CrossRefGoogle Scholar
  54. 54.
    Vaz AB, Mota RC, Bomfim MR, Vieira ML, Zani CL, Rosa CA et al (2009) Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol 55(12):1381–1391. CrossRefPubMedGoogle Scholar
  55. 55.
    Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol 3:122–138. CrossRefGoogle Scholar
  56. 56.
    Wasshausen DC (1986) The systematics of the genus Pachystachys (Acanthaceae) Proc. Biol Soc Washington 99:162–163Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amanda da Silva Ribeiro
    • 1
  • Julio Cesar Polonio
    • 1
  • Alessandra Tenório Costa
    • 1
  • Caroline Menicoze dos Santos
    • 1
  • Sandro Augusto Rhoden
    • 2
  • João Lúcio Azevedo
    • 3
  • João Alencar Pamphile
    • 1
  1. 1.Department of Biotechnology, Genetics and Cell BiologyState University of MaringaMaringáBrazil
  2. 2.Federal Institute of Santa CatarinaSão Francisco do SulBrazil
  3. 3.Department of GeneticsCollege of Agriculture Luiz de Queiroz (ESALQ/USP)PiracicabaBrazil

Personalised recommendations