Skip to main content
Log in

Lifespan Extension of Caenorhabditis elegans by Butyricicoccus pullicaecorum and Megasphaera elsdenii with Probiotic Potential

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Butyricicoccus pullicaecorum and Megasphaera elsdenii inhabit the human intestine and have probiotic potential. The aim of this study was to evaluate the effects of B. pullicaecorum and M. elsdenii on the lifespan of Caenorhabditis elegans. They significantly (P < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers such as lipofuscin, body size, and locomotory activity showed that they retarded aging. They all failed to extend the lifespan of daf-12 or dbl-1 loss-of-function C. elegans mutants compared with E. coli OP50-fed worms. However, the increase in lifespan was observed in daf-16, jnk-1, pmk-1, and skn-1 mutants. Moreover, they increased the resistance of C. elegans to a human pathogen, Salmonella typhimurium. In conclusion, B. pullicaecorum and M. elsdenii extend the lifespan of C. elegans via the transforming growth factor-beta (TGF-β) pathway associated with anti-inflammatory processes in the innate immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R (2013) Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62:1745–1752

    Article  CAS  PubMed  Google Scholar 

  2. Engelmann I, Pujol N (2010) Innate immunity in C. elegans. In: Söderhäll K (ed) Invertebrate immunity. Springer, New York, pp 105–121

    Chapter  Google Scholar 

  3. Fisher AL, Lithgow GJ (2006) The nuclear hormone receptor DAF-12 has opposing effects on Caenorhabditis elegans lifespan and regulates genes repressed in multiple long-lived worms. Aging Cell 5:127 – 138

    Article  CAS  PubMed  Google Scholar 

  4. Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends JB, Van Immerseel F, Boon N, Van de Wiele T (2014) Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 30:70–74

    Article  CAS  PubMed  Google Scholar 

  5. Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A (2007) A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci USA 104:5014–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gruber J, Ng LF, Poovathingal SK, Halliwell B (2009) Deceptively simple but simply deceptive—Caenorhabditis elegans lifespan studies: considerations for aging and antioxidant effects. FEBS Lett 583:3377–3387

    Article  CAS  PubMed  Google Scholar 

  7. Henning P, Horn C, Steyn D, Meissner H, Hagg F (2010) The potential of Megasphaera elsdenii isolates to control ruminal acidosis. Anim Feed Sci Technol 157:13–19

    Article  Google Scholar 

  8. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda T, Yasui C, Hoshino K, Arikawa K, Nishikawa Y (2007) Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against salmonella enterica serovar enteritidis. Appl Environ Microbiol 73:6404–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. John S, Jonathan H (1988) Methods. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp 587–606

    Google Scholar 

  11. Komura T, Ikeda T, Yasui C, Saeki S, Nishikawa Y (2013) Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology 14:73–87

    Article  CAS  PubMed  Google Scholar 

  12. Kurz CL, Ewbank JJ (2003) Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4:380–390

    Article  CAS  PubMed  Google Scholar 

  13. Kurz CL, Tan MW (2004) Regulation of aging and innate immunity in C. elegans. Aging cell 3:185–193

    Article  CAS  PubMed  Google Scholar 

  14. Kwon G, Lee J, Lim YH (2016) Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 6:31713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  16. Liu F, He CX, Luo LJ, Zou QL, Zhao YX, Saini R, Han SF, Knölker HJ, Wang LS, Ge BX (2013) Nuclear hormone receptor regulation of microRNAs controls innate immune responses in C. elegans. PLoS Pathog 9:e1003545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marsh EK, van den Berg MCW, May RC (2011) A two-gene balance regulates Salmonella typhimurium tolerance in the nematode Caenorhabditis elegans. PLoS ONE 6:e16839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meijer K, de Vos P, Priebe MG (2010) Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 13:715–721

    Article  CAS  PubMed  Google Scholar 

  19. Millet ACM, Ewbank JJ (2004) Immunity in Caenorhabditis elegans. Curr Opin Immunol 16:4–9

    Article  CAS  PubMed  Google Scholar 

  20. Mooijaart SP, Brandt BW, Baldal EA, Pijpe J, Kuningas M, Beekman M, Zwaan BJ, Slagboom PE, Westendorp RGJ, Van Heemst D (2005) C. elegans DAF-12, nuclear hormone receptors and human longevity and disease at old age. Ageing Res Rev 4:351–371

    Article  CAS  PubMed  Google Scholar 

  21. Pincus Z, Slack FJ (2010) Developmental biomarkers of aging in Caenorhabditis elegans. Dev Dyn 239:1306–1314

    PubMed  PubMed Central  Google Scholar 

  22. Roberts AF, Gumienny TL, Gleason RJ, Wang H, Padgett RW (2010) Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans. BMC Dev Biol 10:61

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schmeisser S, Priebe S, Groth M, Monajembashi S, Hemmerich P, Guthke R, Platzer M, Ristow M (2013) Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension. Mol Metab 2:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stiernagle T (1999) Maintenance of C. elegans. In: Hope IA (ed) C. elegans: a practical approach. Oxford University Press, New York, pp 51–59

    Google Scholar 

  25. Wu D, Rea SL, Yashin AI, Johnson TE (2006) Visualizing hidden heterogeneity in isogenic populations of C. elegans. Exp Gerontol 41:261–270

    Article  CAS  PubMed  Google Scholar 

  26. Zhang R, Hou A (2013) Host-microbe interactions in Caenorhabditis elegans. ISRN Microbiol 2013:356451

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao L, Zhao Y, Liu R, Zheng X, Zhang M, Guo H, Zhang H, Ren F (2017) The transcription factor DAF-16 is essential for increased longevity in C. elegans exposed to Bifidobacterium longum BB68. Sci Rep 7:7408

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao Y, Zhao L, Zheng X, Fu T, Guo H, Ren F (2013) Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction. J Microbiol 51:183–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Korea University Grant (K1711191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hee Lim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, G., Lee, J., Koh, JH. et al. Lifespan Extension of Caenorhabditis elegans by Butyricicoccus pullicaecorum and Megasphaera elsdenii with Probiotic Potential. Curr Microbiol 75, 557–564 (2018). https://doi.org/10.1007/s00284-017-1416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1416-6

Navigation