Current Microbiology

, Volume 75, Issue 3, pp 284–287 | Cite as

Draft Genome Sequence of Cyclohexylamine-Degrading Strain Acinetobacter sp. YT-02 Isolated

  • Da-Zhong Yan
  • Ya-Ting Gan
  • Hui Zhou
  • Jun Liu
  • Xin Li


Acinetobacter sp. YT-02, a Gram-negative bacterium isolated from the activated sludge from a sodium N-cyclohexylsulfamate production plant, has the ability to degrade cyclohexylamine. It was classified as a member of Acinetobacter sp., a Gram-negative bacterium, sharing a 16S rRNA gene sequence identity of 99% with Acinetobacter guangdongensis strain 1NM-4. It could degrade 10 mmol/L cyclohexylamine within 22 h. Based on the identified metabolite, the metabolic pathway of cyclohexylamine could be postulated as it was degraded via cyclohexanone. Draft genome sequence of this strain (2,993, 647 bp of chromosome length) is presented here. We further identified the genes encoding the enzymes involved in cyclohexylamine oxidation to cyclohexanone and the subsequent downstream metabolic pathway of cyclohexanone oxidation. Strain YT-02 has the potentiality to be applied in the treatment of the pollutant cyclohexylamine, and it could also be treated as a research material to study the degradation mechanism of cyclohexylamine.



The study was supported by the National Natural Science Foundation Program of China (31270112) and State Key Laboratory of Microbial Metabolism (Shanghai Jiao Tong University) (MMLKF14-06).

Supplementary material

284_2017_1377_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 43 KB)


  1. 1.
    Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cheng Q, Thomas SM, Kostichka K, Valentine JR, Nagarajan V (2000) Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J Bacteriol 182:4744–4751CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dhillon BK, Laird MR, Shay JA, Winsor GL, Lo R, Nizam F, Pereira SK, Waglechner N, McArthur AG, Langille MG, Brinkman FS (2015) Island Viewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res 43:104–108CrossRefGoogle Scholar
  5. 5.
    Feng Y, Yang P, Wang X, Zong Z (2016) Characterization of Acinetobacter johnsonii isolate XBB1 carrying nine plasmids and encoding NDM-1, OXA-58 and PER-1 by genome sequencing. J Antimicrob Chemother 71(1):71–75CrossRefPubMedGoogle Scholar
  6. 6.
    Fiester SE, Actis LA (2013) Stress responses in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol 8(3):353–365CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gebhardt MJ, Shuman HA (2017) GigA and GigB are master regulators of antibiotic resistance, stress responses, and virulence in Acinetobacter baumannii. J Bacteriol. doi:  10.1128/JB.00066-17 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ho MT, Weselowski B, Yuan ZC (2017) Complete genome sequence of Acinetobacter calcoaceticus CA16, a bacterium capable of degrading diesel and lignin. Genome Announc 5(24):e00494-17CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):119CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Iwaki H, Hasegawa Y, Teraoka M, Tokuyama T, Bergeron H, Lau PC (1999) Identification of a transcriptional activator (ChnR) and a 6-oxohexanoate dehydrogenase (ChnE) in the cyclohexanol catabolic pathway in Acinetobacter sp. strain NCIMB 9871 and localization of the genes that encode them. Appl Environ Microbiol 65:5158–5162PubMedPubMedCentralGoogle Scholar
  11. 11.
    Iwaki H, Shimizu M, Tokuyama T, Hasegawa Y (1999) Biodegradation of cyclohexylamine by Brevibacterium oxydans IH-35A. Appl Environ Microbiol 65:2232–2234PubMedPubMedCentralGoogle Scholar
  12. 12.
    Jung J, Baek JH, Park W (2010) Complete genome sequence of the diesel- degrading Acinetobacter sp. strain DR1. J Bacteriol 192(18):4794–4795CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kroes R, Peters PW, Berkvens JM, Verschuuren HG, de Vries T, van Esch GJ (1977) Long term toxicity and reproduction study (including a teratogenicity study) with cyclamate, saccharin and cyclohexylamine. Toxicology 8:285–300CrossRefPubMedGoogle Scholar
  15. 15.
    Kumbhar AG, Narasimhan SV, Mathur PK (1998) Spectrophotometric method for determination parts per million levels of cyclohexylamine in water. Talanta 47(2):421–437CrossRefPubMedGoogle Scholar
  16. 16.
    Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lai MJ, Soo PC, Lin NT, Hu A, Chen YJ, Chen LK, Chang KC (2013) Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Int J Antimicrob Agents 42(2):141–148CrossRefPubMedGoogle Scholar
  18. 18.
    Li X, Li CZ, Mao LQ, Yan DZ, Zhou NY (2015) Complete genome sequence of the cyclohexylamine-degrading Pseudomonas plecoglossicida NyZ12. J Biotechnol 199:29–30CrossRefPubMedGoogle Scholar
  19. 19.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):0955–964CrossRefGoogle Scholar
  20. 20.
    Mirza IA, Burk DL, Xiong B, Iwaki H, Hasegawa Y, Grosse S (2013) Structural analysis of a novel cyclohexylamine oxidase from Brevibacterium oxydans IH-35A. PLoS ONE 8(3):e60072CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shen Y, Yan DZ, Chi XQ, Yang YY, Leak DJ, Zhou NY (2008) Degradation of cyclohexylamine by a new isolate of Pseudomonas plecoglossicida. World J Microbiol Biotechnol 24:1623–1625CrossRefGoogle Scholar
  22. 22.
    Yan DZ, Li X, Li CZ, Mao LQ, Chi XQ, Zhou NY, Liu DY (2017) Genome-wide identification and characterization of genes encoding cyclohexylamine degradation in a novel cyclohexylamine-degrading bacterial strain of Pseudomonas plecoglossicida NyZ12. J Biotechnol 251:166–173CrossRefPubMedGoogle Scholar
  23. 23.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Da-Zhong Yan
    • 1
  • Ya-Ting Gan
    • 1
  • Hui Zhou
    • 1
  • Jun Liu
    • 1
  • Xin Li
    • 1
  1. 1.School of Biology and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina

Personalised recommendations