Skip to main content
Log in

Recombinant Mouse Osteocalcin Secreted by Lactococcus lactis Promotes Glucagon-Like Peptide-1 Induction in STC-1 Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An osteoblastic protein, osteocalcin (OC), exists in vivo in two forms: carboxylated OC, and uncarboxylated or low-carboxylated OC (ucOC). ucOC acts as a hormone to regulate carbon and energy metabolism. Recent studies demonstrated that ucOC exerts insulinotropic effects, mainly through the glucagon-like peptide 1 (GLP-1) pathway. GLP-1 is an insulinotropic hormone secreted by enteroendocrine L cells in the small intestine. Thus, efficient delivery of ucOC to the small intestine may be a new therapeutic option for metabolic diseases such as diabetes and obesity. Here, we genetically engineered a lactic acid bacterium, Lactococcus lactis, to produce recombinant mouse ucOC. Western blotting showed that the engineered strain (designated NZ-OC) produces and secretes the designed peptide (rOC) in the presence of nisin, an inducer of the recombinant gene. Highly-purified rOC was obtained from the culture supernatants of NZ-OC using immobilized metal affinity chromatography. An in vitro assay showed that purified rOC promotes GLP-1 secretion in a mouse intestinal neuroendocrine cell line, STC-1, in a dose-dependent manner. These results clearly demonstrate that NZ-OC secretes rOC, and that rOC can promote GLP-1 secretion by STC-1 cells. Genetically modified lactic acid bacteria (gmLAB) have been proposed over the last two decades as an effective and low-cost mucosal delivery vehicle for biomedical proteins. NZ-OC may be an attractive tool for the delivery of rOC to trigger GLP-1 secretion in the small intestine to treat diabetes and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitos E (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact 14:137. doi:10.1186/s12934-015-0313-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105(13):5266–5270. doi:10.1073/pnas.0711119105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50(2):568–575. doi:10.1016/j.bone.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  4. Kakonen SM, Hellman J, Pettersson K, Lovgren T, Karp M (1996) Purification and characterization of recombinant osteocalcin fusion protein expressed in Escherichia coli. Protein Expr Purif 8(2):137–144. doi:10.1006/prep.1996.0085

    Article  CAS  PubMed  Google Scholar 

  5. Kanazawa I (2015) Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes 6(18):1345–1354. doi:10.4239/wjd.v6.i18.1345

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469. doi:10.1016/j.cell.2007.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717. doi:10.1007/s00253-005-0107-6

    Article  CAS  PubMed  Google Scholar 

  8. Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, Takeuchi H, Hirata M (2013) Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS ONE 8(2):e57375. doi:10.1371/journal.pone.0057375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, Takahashi I, Takeuchi H, Hirata M (2014) Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 69:68–79. doi:10.1016/j.bone.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  10. Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14(1–3):48–58

    Article  CAS  PubMed  Google Scholar 

  11. Pi M, Wu Y, Quarles LD (2011) GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res 26(7):1680–1683. doi:10.1002/jbmr.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pi M, Kapoor K, Ye R, Nishimoto SK, Smith JC, Baudry J, Quarles LD (2016) Evidence for osteocalcin binding and activation of GPRC6A in β-cells. Endocrinology 157(5):1866–1880. doi:10.1210/en.2015-2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rishavy MA, Berkner KL (2012) Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 3(2):135–148. doi:10.3945/an.111.001719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rishavy MA, Hallgren KW, Yakubenko AV, Zuerner RL, Runge KW, Berkner KL (2005) The vitamin K-dependent carboxylase has been acquired by Leptospira pathogens and shows altered activity that suggests a role other than protein carboxylation. J Biol Chem 280(41):34870–34877. doi:10.1074/jbc.M504345200

    Article  CAS  PubMed  Google Scholar 

  15. Samazan F, Rokbi B, Seguin D, Telles F, Gautier V, Richarme G, Chevret D, Varela PF, Velours C, Poquet I (2015) Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microb Cell Fact 14:104. doi:10.1186/s12934-015-0271-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  17. Shigemori S, Shimosato T (2017) Applications of genetically modified immunobiotics with high immunoregulatory capacity for treatment of inflammatory bowel diseases. Front Immunol 8:22. doi:10.3389/fimmu.2017.00022

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shigemori S, Oshiro K, Wang P, Yamamoto Y, Wang Y, Sato T, Uyeno Y, Shimosato T (2014) Generation of dipeptidyl peptidase-IV-inhibiting peptides from β-lactoglobulin secreted by Lactococcus lactis. Biomed Res Int 2014:393598. doi:10.1155/2014/393598

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shigemori S, Watanabe T, Kudoh K, Ihara M, Nigar S, Yamamoto Y, Suda Y, Sato T, Kitazawa H, Shimosato T (2015) Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microb Cell Fact 14:189. doi:10.1186/s12934-015-0378-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shigemori S, Ihara M, Sato T, Yamamoto Y, Nigar S, Ogita T, Shimosato T (2017) Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis. Appl Microbiol Biotechnol 101(1):341–349. doi:10.1007/s00253-016-7907-8

    Article  CAS  PubMed  Google Scholar 

  21. van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous α-amylase. Mol Gen Genet 240(3):428–434

    Article  PubMed  Google Scholar 

  22. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6(5):349–362. doi:10.1038/nrmicro1840

    Article  CAS  PubMed  Google Scholar 

  23. Wyszynska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK (2015) Lactic acid bacteria—20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99(7):2967–2977. doi:10.1007/s00253-015-6498-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by a Grant-in-Aid from the Japan Society for the Promotion of Science Fellows (No. 14J06317) to SS and a grant from the Faculty of Agriculture, Shinshu University, to TSh.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suguru Shigemori or Takeshi Shimosato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namai, F., Shigemori, S., Sudo, K. et al. Recombinant Mouse Osteocalcin Secreted by Lactococcus lactis Promotes Glucagon-Like Peptide-1 Induction in STC-1 Cells. Curr Microbiol 75, 92–98 (2018). https://doi.org/10.1007/s00284-017-1354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1354-3

Navigation