Advertisement

Current Microbiology

, Volume 75, Issue 1, pp 92–98 | Cite as

Recombinant Mouse Osteocalcin Secreted by Lactococcus lactis Promotes Glucagon-Like Peptide-1 Induction in STC-1 Cells

  • Fu Namai
  • Suguru Shigemori
  • Koichi Sudo
  • Takashi Sato
  • Yoshinari Yamamoto
  • Shireen Nigar
  • Tasuku Ogita
  • Takeshi Shimosato
Article
  • 333 Downloads

Abstract

An osteoblastic protein, osteocalcin (OC), exists in vivo in two forms: carboxylated OC, and uncarboxylated or low-carboxylated OC (ucOC). ucOC acts as a hormone to regulate carbon and energy metabolism. Recent studies demonstrated that ucOC exerts insulinotropic effects, mainly through the glucagon-like peptide 1 (GLP-1) pathway. GLP-1 is an insulinotropic hormone secreted by enteroendocrine L cells in the small intestine. Thus, efficient delivery of ucOC to the small intestine may be a new therapeutic option for metabolic diseases such as diabetes and obesity. Here, we genetically engineered a lactic acid bacterium, Lactococcus lactis, to produce recombinant mouse ucOC. Western blotting showed that the engineered strain (designated NZ-OC) produces and secretes the designed peptide (rOC) in the presence of nisin, an inducer of the recombinant gene. Highly-purified rOC was obtained from the culture supernatants of NZ-OC using immobilized metal affinity chromatography. An in vitro assay showed that purified rOC promotes GLP-1 secretion in a mouse intestinal neuroendocrine cell line, STC-1, in a dose-dependent manner. These results clearly demonstrate that NZ-OC secretes rOC, and that rOC can promote GLP-1 secretion by STC-1 cells. Genetically modified lactic acid bacteria (gmLAB) have been proposed over the last two decades as an effective and low-cost mucosal delivery vehicle for biomedical proteins. NZ-OC may be an attractive tool for the delivery of rOC to trigger GLP-1 secretion in the small intestine to treat diabetes and obesity.

Notes

Funding

This study was funded by a Grant-in-Aid from the Japan Society for the Promotion of Science Fellows (No. 14J06317) to SS and a grant from the Faculty of Agriculture, Shinshu University, to TSh.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitos E (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact 14:137. doi: 10.1186/s12934-015-0313-6 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105(13):5266–5270. doi: 10.1073/pnas.0711119105 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50(2):568–575. doi: 10.1016/j.bone.2011.04.017 CrossRefPubMedGoogle Scholar
  4. 4.
    Kakonen SM, Hellman J, Pettersson K, Lovgren T, Karp M (1996) Purification and characterization of recombinant osteocalcin fusion protein expressed in Escherichia coli. Protein Expr Purif 8(2):137–144. doi: 10.1006/prep.1996.0085 CrossRefPubMedGoogle Scholar
  5. 5.
    Kanazawa I (2015) Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes 6(18):1345–1354. doi: 10.4239/wjd.v6.i18.1345 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469. doi: 10.1016/j.cell.2007.05.047 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717. doi: 10.1007/s00253-005-0107-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, Takeuchi H, Hirata M (2013) Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS ONE 8(2):e57375. doi: 10.1371/journal.pone.0057375 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, Takahashi I, Takeuchi H, Hirata M (2014) Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 69:68–79. doi: 10.1016/j.bone.2014.09.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14(1–3):48–58CrossRefPubMedGoogle Scholar
  11. 11.
    Pi M, Wu Y, Quarles LD (2011) GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res 26(7):1680–1683. doi: 10.1002/jbmr.390 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pi M, Kapoor K, Ye R, Nishimoto SK, Smith JC, Baudry J, Quarles LD (2016) Evidence for osteocalcin binding and activation of GPRC6A in β-cells. Endocrinology 157(5):1866–1880. doi: 10.1210/en.2015-2010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rishavy MA, Berkner KL (2012) Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 3(2):135–148. doi: 10.3945/an.111.001719 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rishavy MA, Hallgren KW, Yakubenko AV, Zuerner RL, Runge KW, Berkner KL (2005) The vitamin K-dependent carboxylase has been acquired by Leptospira pathogens and shows altered activity that suggests a role other than protein carboxylation. J Biol Chem 280(41):34870–34877. doi: 10.1074/jbc.M504345200 CrossRefPubMedGoogle Scholar
  15. 15.
    Samazan F, Rokbi B, Seguin D, Telles F, Gautier V, Richarme G, Chevret D, Varela PF, Velours C, Poquet I (2015) Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microb Cell Fact 14:104. doi: 10.1186/s12934-015-0271-z CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  17. 17.
    Shigemori S, Shimosato T (2017) Applications of genetically modified immunobiotics with high immunoregulatory capacity for treatment of inflammatory bowel diseases. Front Immunol 8:22. doi: 10.3389/fimmu.2017.00022 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shigemori S, Oshiro K, Wang P, Yamamoto Y, Wang Y, Sato T, Uyeno Y, Shimosato T (2014) Generation of dipeptidyl peptidase-IV-inhibiting peptides from β-lactoglobulin secreted by Lactococcus lactis. Biomed Res Int 2014:393598. doi: 10.1155/2014/393598 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shigemori S, Watanabe T, Kudoh K, Ihara M, Nigar S, Yamamoto Y, Suda Y, Sato T, Kitazawa H, Shimosato T (2015) Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microb Cell Fact 14:189. doi: 10.1186/s12934-015-0378-2 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shigemori S, Ihara M, Sato T, Yamamoto Y, Nigar S, Ogita T, Shimosato T (2017) Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis. Appl Microbiol Biotechnol 101(1):341–349. doi: 10.1007/s00253-016-7907-8 CrossRefPubMedGoogle Scholar
  21. 21.
    van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous α-amylase. Mol Gen Genet 240(3):428–434CrossRefPubMedGoogle Scholar
  22. 22.
    Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6(5):349–362. doi: 10.1038/nrmicro1840 CrossRefPubMedGoogle Scholar
  23. 23.
    Wyszynska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK (2015) Lactic acid bacteria—20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99(7):2967–2977. doi: 10.1007/s00253-015-6498-0 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Food Production Science, Faculty of AgricultureShinshu UniversityKamiinaJapan
  2. 2.Department of Intestinal Ecosystem Regulation, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  3. 3.Metabologenomics Core, Transborder Medical Research CenterUniversity of TsukubaTsukubaJapan
  4. 4.Department of Pulmonology, Graduate School of MedicineYokohama City UniversityYokohamaJapan
  5. 5.Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and TechnologyShinshu UniversityKamiinaJapan
  6. 6.Japan Society for the Promotion of ScienceTokyoJapan
  7. 7.Department of Nutrition and Food TechnologyJessore University of Science and TechnologyJessoreBangladesh
  8. 8.Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical SciencesShinshu UniversityKamiinaJapan
  9. 9.Research Center for Fungal and Microbial DynamismShinshu UniversityKamiinaJapan

Personalised recommendations